Ramzes / src /peft /mapping.py
Bordoglor's picture
Upload folder using huggingface_hub
302920f verified
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
from typing import TYPE_CHECKING, Any, Optional
import torch
from .utils import PeftType
if TYPE_CHECKING:
from .config import PeftConfig
from .tuners.tuners_utils import BaseTuner
# these will be filled by the register_peft_method function
PEFT_TYPE_TO_CONFIG_MAPPING: dict[PeftType, type[PeftConfig]] = {}
PEFT_TYPE_TO_TUNER_MAPPING: dict[PeftType, type[BaseTuner]] = {}
PEFT_TYPE_TO_MIXED_MODEL_MAPPING: dict[PeftType, type[BaseTuner]] = {}
PEFT_TYPE_TO_PREFIX_MAPPING: dict[PeftType, str] = {}
def get_peft_config(config_dict: dict[str, Any]) -> PeftConfig:
"""
Returns a Peft config object from a dictionary.
Args:
config_dict (`Dict[str, Any]`): Dictionary containing the configuration parameters.
"""
return PEFT_TYPE_TO_CONFIG_MAPPING[config_dict["peft_type"]](**config_dict)
def inject_adapter_in_model(
peft_config: PeftConfig,
model: torch.nn.Module,
adapter_name: str = "default",
low_cpu_mem_usage: bool = False,
state_dict: Optional[dict[str, torch.Tensor]] = None,
) -> torch.nn.Module:
r"""
Create PEFT layers and inject them into the model in-place.
Currently the API does not support prompt learning methods and adaption prompt.
This function is similar to [`get_peft_model`] but it does not return a [`PeftModel`] instance. Instead, it returns
the original, mutated instance of the passed model.
Args:
peft_config (`PeftConfig`):
Configuration object containing the parameters of the PEFT model.
model (`torch.nn.Module`):
The input model where the adapter will be injected.
adapter_name (`str`, `optional`, defaults to `"default"`):
The name of the adapter to be injected, if not provided, the default adapter name is used ("default").
low_cpu_mem_usage (`bool`, `optional`, defaults to `False`):
Create empty adapter weights on meta device. Useful to speed up the loading process.
state_dict (`dict`, *optional*, defaults to `None`)
If a `state_dict` is passed here, the adapters will be injected based on the entries of the state_dict.
This can be useful when the exact `target_modules` of the PEFT method is unknown, for instance because the
checkpoint was created without meta data. Note that the values from the `state_dict` are not used, only the
keys are used to determine the correct layers that should be adapted.
"""
if peft_config.is_prompt_learning or peft_config.is_adaption_prompt:
raise ValueError("`create_and_replace` does not support prompt learning and adaption prompt yet.")
if peft_config.peft_type not in PEFT_TYPE_TO_TUNER_MAPPING.keys():
raise ValueError(
f"`inject_adapter_in_model` does not support {peft_config.peft_type} yet. Please use `get_peft_model`."
)
tuner_cls = PEFT_TYPE_TO_TUNER_MAPPING[peft_config.peft_type]
# By instantiating a peft model we are injecting randomly initialized LoRA layers into the model's modules.
peft_model = tuner_cls(
model, peft_config, adapter_name=adapter_name, low_cpu_mem_usage=low_cpu_mem_usage, state_dict=state_dict
)
return peft_model.model