Ramzes / tests /test_auto.py
Bordoglor's picture
Upload folder using huggingface_hub
302920f verified
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tempfile
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import (
AutoPeftModel,
AutoPeftModelForCausalLM,
AutoPeftModelForFeatureExtraction,
AutoPeftModelForQuestionAnswering,
AutoPeftModelForSeq2SeqLM,
AutoPeftModelForSequenceClassification,
AutoPeftModelForTokenClassification,
LoraConfig,
PeftModel,
PeftModelForCausalLM,
PeftModelForFeatureExtraction,
PeftModelForQuestionAnswering,
PeftModelForSeq2SeqLM,
PeftModelForSequenceClassification,
PeftModelForTokenClassification,
get_peft_model,
)
from peft.utils import infer_device
class TestPeftAutoModel:
dtype = torch.float16 if infer_device() == "mps" else torch.bfloat16
def test_peft_causal_lm(self):
model_id = "peft-internal-testing/tiny-OPTForCausalLM-lora"
model = AutoPeftModelForCausalLM.from_pretrained(model_id)
assert isinstance(model, PeftModelForCausalLM)
with tempfile.TemporaryDirectory() as tmp_dirname:
model.save_pretrained(tmp_dirname)
model = AutoPeftModelForCausalLM.from_pretrained(tmp_dirname)
assert isinstance(model, PeftModelForCausalLM)
# check if kwargs are passed correctly
model = AutoPeftModelForCausalLM.from_pretrained(model_id, torch_dtype=self.dtype)
assert isinstance(model, PeftModelForCausalLM)
assert model.base_model.lm_head.weight.dtype == self.dtype
adapter_name = "default"
is_trainable = False
# This should work
_ = AutoPeftModelForCausalLM.from_pretrained(model_id, adapter_name, is_trainable, torch_dtype=self.dtype)
def test_peft_causal_lm_extended_vocab(self):
model_id = "peft-internal-testing/tiny-random-OPTForCausalLM-extended-vocab"
model = AutoPeftModelForCausalLM.from_pretrained(model_id)
assert isinstance(model, PeftModelForCausalLM)
# check if kwargs are passed correctly
model = AutoPeftModelForCausalLM.from_pretrained(model_id, torch_dtype=self.dtype)
assert isinstance(model, PeftModelForCausalLM)
assert model.base_model.lm_head.weight.dtype == self.dtype
adapter_name = "default"
is_trainable = False
# This should work
_ = AutoPeftModelForCausalLM.from_pretrained(model_id, adapter_name, is_trainable, torch_dtype=self.dtype)
def test_peft_seq2seq_lm(self):
model_id = "peft-internal-testing/tiny_T5ForSeq2SeqLM-lora"
model = AutoPeftModelForSeq2SeqLM.from_pretrained(model_id)
assert isinstance(model, PeftModelForSeq2SeqLM)
with tempfile.TemporaryDirectory() as tmp_dirname:
model.save_pretrained(tmp_dirname)
model = AutoPeftModelForSeq2SeqLM.from_pretrained(tmp_dirname)
assert isinstance(model, PeftModelForSeq2SeqLM)
# check if kwargs are passed correctly
model = AutoPeftModelForSeq2SeqLM.from_pretrained(model_id, torch_dtype=self.dtype)
assert isinstance(model, PeftModelForSeq2SeqLM)
assert model.base_model.lm_head.weight.dtype == self.dtype
adapter_name = "default"
is_trainable = False
# This should work
_ = AutoPeftModelForSeq2SeqLM.from_pretrained(model_id, adapter_name, is_trainable, torch_dtype=self.dtype)
def test_peft_sequence_cls(self):
model_id = "peft-internal-testing/tiny_OPTForSequenceClassification-lora"
model = AutoPeftModelForSequenceClassification.from_pretrained(model_id)
assert isinstance(model, PeftModelForSequenceClassification)
with tempfile.TemporaryDirectory() as tmp_dirname:
model.save_pretrained(tmp_dirname)
model = AutoPeftModelForSequenceClassification.from_pretrained(tmp_dirname)
assert isinstance(model, PeftModelForSequenceClassification)
# check if kwargs are passed correctly
model = AutoPeftModelForSequenceClassification.from_pretrained(model_id, torch_dtype=self.dtype)
assert isinstance(model, PeftModelForSequenceClassification)
assert model.score.original_module.weight.dtype == self.dtype
adapter_name = "default"
is_trainable = False
# This should work
_ = AutoPeftModelForSequenceClassification.from_pretrained(
model_id, adapter_name, is_trainable, torch_dtype=self.dtype
)
def test_peft_token_classification(self):
model_id = "peft-internal-testing/tiny_GPT2ForTokenClassification-lora"
model = AutoPeftModelForTokenClassification.from_pretrained(model_id)
assert isinstance(model, PeftModelForTokenClassification)
with tempfile.TemporaryDirectory() as tmp_dirname:
model.save_pretrained(tmp_dirname)
model = AutoPeftModelForTokenClassification.from_pretrained(tmp_dirname)
assert isinstance(model, PeftModelForTokenClassification)
# check if kwargs are passed correctly
model = AutoPeftModelForTokenClassification.from_pretrained(model_id, torch_dtype=self.dtype)
assert isinstance(model, PeftModelForTokenClassification)
assert model.base_model.classifier.original_module.weight.dtype == self.dtype
adapter_name = "default"
is_trainable = False
# This should work
_ = AutoPeftModelForTokenClassification.from_pretrained(
model_id, adapter_name, is_trainable, torch_dtype=self.dtype
)
def test_peft_question_answering(self):
model_id = "peft-internal-testing/tiny_OPTForQuestionAnswering-lora"
model = AutoPeftModelForQuestionAnswering.from_pretrained(model_id)
assert isinstance(model, PeftModelForQuestionAnswering)
with tempfile.TemporaryDirectory() as tmp_dirname:
model.save_pretrained(tmp_dirname)
model = AutoPeftModelForQuestionAnswering.from_pretrained(tmp_dirname)
assert isinstance(model, PeftModelForQuestionAnswering)
# check if kwargs are passed correctly
model = AutoPeftModelForQuestionAnswering.from_pretrained(model_id, torch_dtype=self.dtype)
assert isinstance(model, PeftModelForQuestionAnswering)
assert model.base_model.qa_outputs.original_module.weight.dtype == self.dtype
adapter_name = "default"
is_trainable = False
# This should work
_ = AutoPeftModelForQuestionAnswering.from_pretrained(
model_id, adapter_name, is_trainable, torch_dtype=self.dtype
)
def test_peft_feature_extraction(self):
model_id = "peft-internal-testing/tiny_OPTForFeatureExtraction-lora"
model = AutoPeftModelForFeatureExtraction.from_pretrained(model_id)
assert isinstance(model, PeftModelForFeatureExtraction)
with tempfile.TemporaryDirectory() as tmp_dirname:
model.save_pretrained(tmp_dirname)
model = AutoPeftModelForFeatureExtraction.from_pretrained(tmp_dirname)
assert isinstance(model, PeftModelForFeatureExtraction)
# check if kwargs are passed correctly
model = AutoPeftModelForFeatureExtraction.from_pretrained(model_id, torch_dtype=self.dtype)
assert isinstance(model, PeftModelForFeatureExtraction)
assert model.base_model.model.decoder.embed_tokens.weight.dtype == self.dtype
adapter_name = "default"
is_trainable = False
# This should work
_ = AutoPeftModelForFeatureExtraction.from_pretrained(
model_id, adapter_name, is_trainable, torch_dtype=self.dtype
)
def test_peft_whisper(self):
model_id = "peft-internal-testing/tiny_WhisperForConditionalGeneration-lora"
model = AutoPeftModel.from_pretrained(model_id)
assert isinstance(model, PeftModel)
with tempfile.TemporaryDirectory() as tmp_dirname:
model.save_pretrained(tmp_dirname)
model = AutoPeftModel.from_pretrained(tmp_dirname)
assert isinstance(model, PeftModel)
# check if kwargs are passed correctly
model = AutoPeftModel.from_pretrained(model_id, torch_dtype=self.dtype)
assert isinstance(model, PeftModel)
assert model.base_model.model.model.encoder.embed_positions.weight.dtype == self.dtype
adapter_name = "default"
is_trainable = False
# This should work
_ = AutoPeftModel.from_pretrained(model_id, adapter_name, is_trainable, torch_dtype=self.dtype)
def test_embedding_size_not_reduced_if_greater_vocab_size(self, tmp_path):
# See 2415
# There was a bug in AutoPeftModels where the embedding was always resized to the vocab size of the tokenizer
# when the tokenizer was found. This makes sense if the vocabulary was extended, but some models like Qwen
# already start out with "spare" embeddings, i.e. the embedding size is larger than the vocab size. This could
# result in the embedding being shrunk, which in turn resulted in an error when loading the weights.
# first create a checkpoint; it is important that the tokenizer is also saved in the same location
model_id = "Qwen/Qwen2-0.5B"
model = AutoModelForCausalLM.from_pretrained(model_id)
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = get_peft_model(model, LoraConfig(modules_to_save=["lm_head", "embed_token"]))
model.save_pretrained(tmp_path)
tokenizer.save_pretrained(tmp_path)
# does not raise; without the fix, it raises:
# > size mismatch for base_model.model.lm_head.modules_to_save.default.weight: copying a param with shape
# torch.Size([151936, 896]) from checkpoint, the shape in current model is torch.Size([151646, 896]).
AutoPeftModelForCausalLM.from_pretrained(tmp_path)