|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import tempfile |
|
|
|
|
|
import pytest |
|
|
import torch |
|
|
from transformers import AutoModelForSeq2SeqLM, AutoModelForTokenClassification |
|
|
|
|
|
from peft import ( |
|
|
AdaLoraConfig, |
|
|
BOFTConfig, |
|
|
BoneConfig, |
|
|
C3AConfig, |
|
|
FourierFTConfig, |
|
|
HRAConfig, |
|
|
IA3Config, |
|
|
LoraConfig, |
|
|
MissConfig, |
|
|
OFTConfig, |
|
|
PrefixTuningConfig, |
|
|
PromptEncoderConfig, |
|
|
PromptTuningConfig, |
|
|
RoadConfig, |
|
|
ShiraConfig, |
|
|
TaskType, |
|
|
VBLoRAConfig, |
|
|
VeraConfig, |
|
|
WaveFTConfig, |
|
|
get_peft_model, |
|
|
) |
|
|
|
|
|
from .testing_common import PeftCommonTester |
|
|
from .testing_utils import set_init_weights_false |
|
|
|
|
|
|
|
|
PEFT_ENCODER_DECODER_MODELS_TO_TEST = [ |
|
|
"ybelkada/tiny-random-T5ForConditionalGeneration-calibrated", |
|
|
"hf-internal-testing/tiny-random-BartForConditionalGeneration", |
|
|
] |
|
|
|
|
|
|
|
|
ALL_CONFIGS = [ |
|
|
( |
|
|
AdaLoraConfig, |
|
|
{ |
|
|
"target_modules": None, |
|
|
"total_step": 1, |
|
|
"task_type": "SEQ_2_SEQ_LM", |
|
|
}, |
|
|
), |
|
|
( |
|
|
BOFTConfig, |
|
|
{ |
|
|
"target_modules": None, |
|
|
"task_type": "SEQ_2_SEQ_LM", |
|
|
}, |
|
|
), |
|
|
( |
|
|
BoneConfig, |
|
|
{ |
|
|
"target_modules": None, |
|
|
"r": 2, |
|
|
"task_type": "SEQ_2_SEQ_LM", |
|
|
}, |
|
|
), |
|
|
( |
|
|
MissConfig, |
|
|
{ |
|
|
"target_modules": None, |
|
|
"r": 2, |
|
|
"task_type": "SEQ_2_SEQ_LM", |
|
|
}, |
|
|
), |
|
|
( |
|
|
FourierFTConfig, |
|
|
{ |
|
|
"n_frequency": 10, |
|
|
"target_modules": None, |
|
|
"task_type": "SEQ_2_SEQ_LM", |
|
|
}, |
|
|
), |
|
|
( |
|
|
HRAConfig, |
|
|
{ |
|
|
"target_modules": None, |
|
|
"task_type": "SEQ_2_SEQ_LM", |
|
|
}, |
|
|
), |
|
|
( |
|
|
IA3Config, |
|
|
{ |
|
|
"target_modules": None, |
|
|
"feedforward_modules": None, |
|
|
"task_type": "SEQ_2_SEQ_LM", |
|
|
}, |
|
|
), |
|
|
( |
|
|
LoraConfig, |
|
|
{ |
|
|
"r": 8, |
|
|
"lora_alpha": 32, |
|
|
"target_modules": None, |
|
|
"lora_dropout": 0.05, |
|
|
"bias": "none", |
|
|
"task_type": "SEQ_2_SEQ_LM", |
|
|
}, |
|
|
), |
|
|
( |
|
|
LoraConfig, |
|
|
{ |
|
|
"r": 8, |
|
|
"lora_alpha": 32, |
|
|
"target_modules": None, |
|
|
"lora_dropout": 0.05, |
|
|
"bias": "none", |
|
|
"trainable_token_indices": [0, 1, 3], |
|
|
"task_type": "SEQ_2_SEQ_LM", |
|
|
}, |
|
|
), |
|
|
( |
|
|
OFTConfig, |
|
|
{ |
|
|
"target_modules": None, |
|
|
"task_type": "SEQ_2_SEQ_LM", |
|
|
}, |
|
|
), |
|
|
( |
|
|
PrefixTuningConfig, |
|
|
{ |
|
|
"num_virtual_tokens": 10, |
|
|
"task_type": "SEQ_2_SEQ_LM", |
|
|
}, |
|
|
), |
|
|
( |
|
|
PromptEncoderConfig, |
|
|
{ |
|
|
"num_virtual_tokens": 10, |
|
|
"encoder_hidden_size": 32, |
|
|
"task_type": "SEQ_2_SEQ_LM", |
|
|
}, |
|
|
), |
|
|
( |
|
|
PromptTuningConfig, |
|
|
{ |
|
|
"num_virtual_tokens": 10, |
|
|
"task_type": "SEQ_2_SEQ_LM", |
|
|
}, |
|
|
), |
|
|
( |
|
|
RoadConfig, |
|
|
{ |
|
|
"task_type": "SEQ_2_SEQ_LM", |
|
|
"variant": "road_1", |
|
|
"group_size": 2, |
|
|
}, |
|
|
), |
|
|
( |
|
|
ShiraConfig, |
|
|
{ |
|
|
"r": 1, |
|
|
"task_type": "SEQ_2_SEQ_LM", |
|
|
"target_modules": None, |
|
|
"init_weights": False, |
|
|
}, |
|
|
), |
|
|
( |
|
|
VBLoRAConfig, |
|
|
{ |
|
|
"target_modules": None, |
|
|
"vblora_dropout": 0.05, |
|
|
"vector_length": 1, |
|
|
"num_vectors": 2, |
|
|
"task_type": "SEQ_2_SEQ_LM", |
|
|
}, |
|
|
), |
|
|
( |
|
|
VeraConfig, |
|
|
{ |
|
|
"r": 8, |
|
|
"target_modules": None, |
|
|
"vera_dropout": 0.05, |
|
|
"projection_prng_key": 0xFF, |
|
|
"d_initial": 0.1, |
|
|
"save_projection": True, |
|
|
"bias": "none", |
|
|
"task_type": "SEQ_2_SEQ_LM", |
|
|
}, |
|
|
), |
|
|
( |
|
|
C3AConfig, |
|
|
{ |
|
|
"task_type": "SEQ_2_SEQ_LM", |
|
|
"block_size": 1, |
|
|
"target_modules": None, |
|
|
}, |
|
|
), |
|
|
( |
|
|
WaveFTConfig, |
|
|
{ |
|
|
"task_type": "SEQ_2_SEQ_LM", |
|
|
"n_frequency": 8, |
|
|
"target_modules": None, |
|
|
}, |
|
|
), |
|
|
] |
|
|
|
|
|
|
|
|
class TestEncoderDecoderModels(PeftCommonTester): |
|
|
transformers_class = AutoModelForSeq2SeqLM |
|
|
|
|
|
def skipTest(self, reason=""): |
|
|
|
|
|
pytest.skip(reason) |
|
|
|
|
|
def prepare_inputs_for_testing(self): |
|
|
input_ids = torch.tensor([[1, 1, 1], [1, 2, 1]]).to(self.torch_device) |
|
|
decoder_input_ids = torch.tensor([[1, 1, 1], [1, 2, 1]]).to(self.torch_device) |
|
|
attention_mask = torch.tensor([[1, 1, 1], [1, 0, 1]]).to(self.torch_device) |
|
|
|
|
|
input_dict = { |
|
|
"input_ids": input_ids, |
|
|
"decoder_input_ids": decoder_input_ids, |
|
|
"attention_mask": attention_mask, |
|
|
} |
|
|
|
|
|
return input_dict |
|
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST) |
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) |
|
|
def test_attributes_parametrized(self, model_id, config_cls, config_kwargs): |
|
|
self._test_model_attr(model_id, config_cls, config_kwargs) |
|
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST) |
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) |
|
|
def test_adapter_name(self, model_id, config_cls, config_kwargs): |
|
|
self._test_adapter_name(model_id, config_cls, config_kwargs) |
|
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST) |
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) |
|
|
def test_prepare_for_training_parametrized(self, model_id, config_cls, config_kwargs): |
|
|
self._test_prepare_for_training(model_id, config_cls, config_kwargs) |
|
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST) |
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) |
|
|
def test_save_pretrained(self, model_id, config_cls, config_kwargs): |
|
|
self._test_save_pretrained(model_id, config_cls, config_kwargs) |
|
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST) |
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) |
|
|
def test_save_pretrained_pickle(self, model_id, config_cls, config_kwargs): |
|
|
self._test_save_pretrained(model_id, config_cls, config_kwargs, safe_serialization=False) |
|
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST) |
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) |
|
|
def test_save_pretrained_selected_adapters(self, model_id, config_cls, config_kwargs): |
|
|
self._test_save_pretrained_selected_adapters(model_id, config_cls, config_kwargs) |
|
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST) |
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) |
|
|
def test_save_pretrained_selected_adapters_pickle(self, model_id, config_cls, config_kwargs): |
|
|
self._test_save_pretrained_selected_adapters(model_id, config_cls, config_kwargs, safe_serialization=False) |
|
|
|
|
|
def test_load_model_low_cpu_mem_usage(self): |
|
|
|
|
|
self._test_load_model_low_cpu_mem_usage(PEFT_ENCODER_DECODER_MODELS_TO_TEST[0], LoraConfig, {}) |
|
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST) |
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) |
|
|
def test_from_pretrained_config_construction(self, model_id, config_cls, config_kwargs): |
|
|
self._test_from_pretrained_config_construction(model_id, config_cls, config_kwargs) |
|
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST) |
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) |
|
|
def test_merge_layers(self, model_id, config_cls, config_kwargs): |
|
|
config_kwargs = set_init_weights_false(config_cls, config_kwargs) |
|
|
self._test_merge_layers(model_id, config_cls, config_kwargs) |
|
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST) |
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) |
|
|
def test_mixed_adapter_batches(self, model_id, config_cls, config_kwargs): |
|
|
config_kwargs = set_init_weights_false(config_cls, config_kwargs) |
|
|
self._test_mixed_adapter_batches(model_id, config_cls, config_kwargs) |
|
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST) |
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) |
|
|
def test_generate_with_mixed_adapter_batches(self, model_id, config_cls, config_kwargs): |
|
|
config_kwargs = set_init_weights_false(config_cls, config_kwargs) |
|
|
self._test_generate_with_mixed_adapter_batches_and_beam_search(model_id, config_cls, config_kwargs) |
|
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST) |
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) |
|
|
def test_generate(self, model_id, config_cls, config_kwargs): |
|
|
self._test_generate(model_id, config_cls, config_kwargs) |
|
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST) |
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) |
|
|
def test_generate_pos_args(self, model_id, config_cls, config_kwargs): |
|
|
self._test_generate_pos_args(model_id, config_cls, config_kwargs, raises_err=True) |
|
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST) |
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) |
|
|
def test_generate_half_prec(self, model_id, config_cls, config_kwargs): |
|
|
self._test_generate_half_prec(model_id, config_cls, config_kwargs) |
|
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST) |
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) |
|
|
def test_prefix_tuning_half_prec_conversion(self, model_id, config_cls, config_kwargs): |
|
|
self._test_prefix_tuning_half_prec_conversion(model_id, config_cls, config_kwargs) |
|
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST) |
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) |
|
|
def test_training_encoder_decoders(self, model_id, config_cls, config_kwargs): |
|
|
self._test_training(model_id, config_cls, config_kwargs) |
|
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST) |
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) |
|
|
def test_training_encoder_decoders_layer_indexing(self, model_id, config_cls, config_kwargs): |
|
|
self._test_training_layer_indexing(model_id, config_cls, config_kwargs) |
|
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST) |
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) |
|
|
def test_training_encoder_decoders_gradient_checkpointing(self, model_id, config_cls, config_kwargs): |
|
|
self._test_training_gradient_checkpointing(model_id, config_cls, config_kwargs) |
|
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST) |
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) |
|
|
def test_inference_safetensors(self, model_id, config_cls, config_kwargs): |
|
|
self._test_inference_safetensors(model_id, config_cls, config_kwargs) |
|
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST) |
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) |
|
|
def test_peft_model_device_map(self, model_id, config_cls, config_kwargs): |
|
|
self._test_peft_model_device_map(model_id, config_cls, config_kwargs) |
|
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST) |
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) |
|
|
def test_delete_adapter(self, model_id, config_cls, config_kwargs): |
|
|
self._test_delete_adapter(model_id, config_cls, config_kwargs) |
|
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST) |
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) |
|
|
def test_delete_inactive_adapter(self, model_id, config_cls, config_kwargs): |
|
|
self._test_delete_inactive_adapter(model_id, config_cls, config_kwargs) |
|
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST) |
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) |
|
|
def test_adding_multiple_adapters_with_bias_raises(self, model_id, config_cls, config_kwargs): |
|
|
self._test_adding_multiple_adapters_with_bias_raises(model_id, config_cls, config_kwargs) |
|
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST) |
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) |
|
|
def test_unload_adapter(self, model_id, config_cls, config_kwargs): |
|
|
config_kwargs = set_init_weights_false(config_cls, config_kwargs) |
|
|
self._test_unload_adapter(model_id, config_cls, config_kwargs) |
|
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST) |
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) |
|
|
def test_weighted_combination_of_adapters(self, model_id, config_cls, config_kwargs): |
|
|
config_kwargs = set_init_weights_false(config_cls, config_kwargs) |
|
|
self._test_weighted_combination_of_adapters(model_id, config_cls, config_kwargs) |
|
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST) |
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) |
|
|
def test_training_prompt_learning_tasks(self, model_id, config_cls, config_kwargs): |
|
|
self._test_training_prompt_learning_tasks(model_id, config_cls, config_kwargs) |
|
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST) |
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) |
|
|
def test_disable_adapter(self, model_id, config_cls, config_kwargs): |
|
|
config_kwargs = set_init_weights_false(config_cls, config_kwargs) |
|
|
self._test_disable_adapter(model_id, config_cls, config_kwargs) |
|
|
|
|
|
def test_active_adapters_prompt_learning(self): |
|
|
model = AutoModelForSeq2SeqLM.from_pretrained( |
|
|
"hf-internal-testing/tiny-random-BartForConditionalGeneration" |
|
|
).to(self.torch_device) |
|
|
|
|
|
config = PromptEncoderConfig(task_type=TaskType.SEQ_2_SEQ_LM, num_virtual_tokens=10) |
|
|
model = get_peft_model(model, config) |
|
|
assert model.active_adapters == ["default"] |
|
|
|
|
|
def test_save_shared_tensors(self): |
|
|
model_id = "hf-internal-testing/tiny-random-RobertaModel" |
|
|
peft_config = LoraConfig( |
|
|
task_type=TaskType.TOKEN_CLS, |
|
|
inference_mode=False, |
|
|
r=16, |
|
|
lora_alpha=16, |
|
|
lora_dropout=0.1, |
|
|
bias="all", |
|
|
) |
|
|
model = AutoModelForTokenClassification.from_pretrained(model_id, num_labels=11) |
|
|
model = get_peft_model(model, peft_config) |
|
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
|
|
|
|
model.save_pretrained(tmp_dir, safe_serialization=True) |
|
|
|