Ramzes / tests /test_vision_models.py
Bordoglor's picture
Upload folder using huggingface_hub
302920f verified
# Copyright 2024-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This is not a full on test suite of vision models, since we already run many tests on dummy models with Conv2d layers
# and on stable diffusion models. Instead, this file contains specific tests for bugs that have been found in the past.
import gc
import numpy as np
import pytest
import torch
from accelerate.utils.memory import clear_device_cache
from safetensors.torch import load_file
from transformers import (
AutoImageProcessor,
AutoModelForImageClassification,
AutoProcessor,
LlavaForConditionalGeneration,
)
from peft import (
HRAConfig,
LoHaConfig,
LoKrConfig,
LoraConfig,
OFTConfig,
PeftModel,
PrefixTuningConfig,
get_peft_model,
)
from .testing_utils import load_cat_image
CONFIGS = {
"lora": LoraConfig(target_modules=["convolution"], modules_to_save=["classifier", "normalization"]),
"loha": LoHaConfig(target_modules=["convolution"], modules_to_save=["classifier", "normalization"]),
"lokr": LoKrConfig(target_modules=["convolution"], modules_to_save=["classifier", "normalization"]),
"oft": OFTConfig(
r=1, oft_block_size=0, target_modules=["convolution"], modules_to_save=["classifier", "normalization"]
),
"hra": HRAConfig(target_modules=["convolution"], modules_to_save=["classifier", "normalization"]),
# TODO: cannot use BOFT because some convolutional kernel dimensions are even (64) and others odd (147). There is no
# common denominator for the boft_block_size except 1, but using 1 results in an error in the fbd_cuda kernel:
# > Error in forward_fast_block_diag_cuda_kernel: an illegal memory access was encountered
# "boft": BOFTConfig(target_modules=["convolution"], modules_to_save=["classifier", "normalization"], boft_block_size=2),
}
# Ensure that models like Llava that pass past_key_values automatically do not fail, see #1938
class TestPastKV:
def test_past_kv(self):
model_id = "peft-internal-testing/tiny-LlavaForConditionalGeneration"
prompt = "USER: <image>\nWhat are these?\nASSISTANT:"
# prepare model and inputs
model = LlavaForConditionalGeneration.from_pretrained(
model_id,
low_cpu_mem_usage=True,
)
processor = AutoProcessor.from_pretrained(model_id)
raw_image = np.random.randint(0, 255, (224, 224, 3), dtype=np.uint8)
inputs = processor(text=prompt, images=raw_image, return_tensors="pt")
# get peft model
peft_config = PrefixTuningConfig(task_type="CAUSAL_LM", num_virtual_tokens=20)
model = get_peft_model(model, peft_config)
# check that this does not raise
model(**inputs, output_hidden_states=True)
class TestResnet:
model_id = "hf-internal-testing/tiny-random-ResNetForImageClassification"
cat_image = load_cat_image() # for caching
@pytest.fixture(autouse=True)
def teardown(self):
r"""
Efficient mechanism to free GPU memory after each test. Based on
https://github.com/huggingface/transformers/issues/21094
"""
clear_device_cache(garbage_collection=True)
gc.collect()
@pytest.fixture(scope="class")
def image_processor(self):
image_processor = AutoImageProcessor.from_pretrained(self.model_id)
return image_processor
@pytest.fixture(scope="class")
def data(self, image_processor):
return image_processor(self.cat_image, return_tensors="pt")
@pytest.mark.parametrize("config", CONFIGS.values(), ids=CONFIGS.keys())
def test_model_with_batchnorm_reproducibility(self, config, tmp_path, data):
# see 1732
torch.manual_seed(0)
model = AutoModelForImageClassification.from_pretrained(self.model_id)
model = get_peft_model(model, config)
# record outputs before training
model.eval()
with torch.inference_mode():
output_before = model(**data)
model.train()
# train the model
optimizer = torch.optim.AdamW(model.parameters(), lr=1e-3)
batch_size = 4
max_steps = 5 * batch_size
labels = torch.zeros(1, 3)
labels[0, 1] = 1
for i in range(0, max_steps, batch_size):
optimizer.zero_grad()
outputs = model(**data, labels=labels)
loss = outputs.loss
loss.backward()
optimizer.step()
# record outputs after training
model.eval()
with torch.inference_mode():
output_after = model(**data)
assert torch.isfinite(output_after.logits).all()
atol, rtol = 1e-4, 1e-4
# sanity check: model was updated
assert not torch.allclose(output_before.logits, output_after.logits, atol=atol, rtol=rtol)
# check saving the model and loading it
model.save_pretrained(tmp_path)
del model
torch.manual_seed(0)
model = AutoModelForImageClassification.from_pretrained(self.model_id)
model = PeftModel.from_pretrained(model, tmp_path).eval()
with torch.inference_mode():
output_loaded = model(**data)
assert torch.allclose(output_after.logits, output_loaded.logits, atol=atol, rtol=rtol)
# ensure that the checkpoint file contains the buffers
model_running_mean = len([k for k in model.state_dict().keys() if "running_mean" in k])
state_dict = load_file(tmp_path / "adapter_model.safetensors")
checkpoint_running_mean = len([k for k in state_dict.keys() if "running_mean" in k])
# note that the model has twice as many "running_mean", as there is one copy per ModulesToSaveWrapper, we need
# to multiply by 2 to get the same number
assert model_running_mean == checkpoint_running_mean * 2