|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
|
|
|
|
import numpy as np |
|
|
import pytest |
|
|
import torch |
|
|
from accelerate.utils.memory import clear_device_cache |
|
|
from safetensors.torch import load_file |
|
|
from transformers import ( |
|
|
AutoImageProcessor, |
|
|
AutoModelForImageClassification, |
|
|
AutoProcessor, |
|
|
LlavaForConditionalGeneration, |
|
|
) |
|
|
|
|
|
from peft import ( |
|
|
HRAConfig, |
|
|
LoHaConfig, |
|
|
LoKrConfig, |
|
|
LoraConfig, |
|
|
OFTConfig, |
|
|
PeftModel, |
|
|
PrefixTuningConfig, |
|
|
get_peft_model, |
|
|
) |
|
|
|
|
|
from .testing_utils import load_cat_image |
|
|
|
|
|
|
|
|
CONFIGS = { |
|
|
"lora": LoraConfig(target_modules=["convolution"], modules_to_save=["classifier", "normalization"]), |
|
|
"loha": LoHaConfig(target_modules=["convolution"], modules_to_save=["classifier", "normalization"]), |
|
|
"lokr": LoKrConfig(target_modules=["convolution"], modules_to_save=["classifier", "normalization"]), |
|
|
"oft": OFTConfig( |
|
|
r=1, oft_block_size=0, target_modules=["convolution"], modules_to_save=["classifier", "normalization"] |
|
|
), |
|
|
"hra": HRAConfig(target_modules=["convolution"], modules_to_save=["classifier", "normalization"]), |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
class TestPastKV: |
|
|
def test_past_kv(self): |
|
|
model_id = "peft-internal-testing/tiny-LlavaForConditionalGeneration" |
|
|
prompt = "USER: <image>\nWhat are these?\nASSISTANT:" |
|
|
|
|
|
|
|
|
model = LlavaForConditionalGeneration.from_pretrained( |
|
|
model_id, |
|
|
low_cpu_mem_usage=True, |
|
|
) |
|
|
processor = AutoProcessor.from_pretrained(model_id) |
|
|
raw_image = np.random.randint(0, 255, (224, 224, 3), dtype=np.uint8) |
|
|
inputs = processor(text=prompt, images=raw_image, return_tensors="pt") |
|
|
|
|
|
|
|
|
peft_config = PrefixTuningConfig(task_type="CAUSAL_LM", num_virtual_tokens=20) |
|
|
model = get_peft_model(model, peft_config) |
|
|
|
|
|
model(**inputs, output_hidden_states=True) |
|
|
|
|
|
|
|
|
class TestResnet: |
|
|
model_id = "hf-internal-testing/tiny-random-ResNetForImageClassification" |
|
|
cat_image = load_cat_image() |
|
|
|
|
|
@pytest.fixture(autouse=True) |
|
|
def teardown(self): |
|
|
r""" |
|
|
Efficient mechanism to free GPU memory after each test. Based on |
|
|
https://github.com/huggingface/transformers/issues/21094 |
|
|
""" |
|
|
clear_device_cache(garbage_collection=True) |
|
|
gc.collect() |
|
|
|
|
|
@pytest.fixture(scope="class") |
|
|
def image_processor(self): |
|
|
image_processor = AutoImageProcessor.from_pretrained(self.model_id) |
|
|
return image_processor |
|
|
|
|
|
@pytest.fixture(scope="class") |
|
|
def data(self, image_processor): |
|
|
return image_processor(self.cat_image, return_tensors="pt") |
|
|
|
|
|
@pytest.mark.parametrize("config", CONFIGS.values(), ids=CONFIGS.keys()) |
|
|
def test_model_with_batchnorm_reproducibility(self, config, tmp_path, data): |
|
|
|
|
|
torch.manual_seed(0) |
|
|
model = AutoModelForImageClassification.from_pretrained(self.model_id) |
|
|
model = get_peft_model(model, config) |
|
|
|
|
|
|
|
|
model.eval() |
|
|
with torch.inference_mode(): |
|
|
output_before = model(**data) |
|
|
model.train() |
|
|
|
|
|
|
|
|
optimizer = torch.optim.AdamW(model.parameters(), lr=1e-3) |
|
|
batch_size = 4 |
|
|
max_steps = 5 * batch_size |
|
|
labels = torch.zeros(1, 3) |
|
|
labels[0, 1] = 1 |
|
|
for i in range(0, max_steps, batch_size): |
|
|
optimizer.zero_grad() |
|
|
outputs = model(**data, labels=labels) |
|
|
loss = outputs.loss |
|
|
loss.backward() |
|
|
optimizer.step() |
|
|
|
|
|
|
|
|
model.eval() |
|
|
with torch.inference_mode(): |
|
|
output_after = model(**data) |
|
|
assert torch.isfinite(output_after.logits).all() |
|
|
atol, rtol = 1e-4, 1e-4 |
|
|
|
|
|
assert not torch.allclose(output_before.logits, output_after.logits, atol=atol, rtol=rtol) |
|
|
|
|
|
|
|
|
model.save_pretrained(tmp_path) |
|
|
del model |
|
|
|
|
|
torch.manual_seed(0) |
|
|
model = AutoModelForImageClassification.from_pretrained(self.model_id) |
|
|
model = PeftModel.from_pretrained(model, tmp_path).eval() |
|
|
with torch.inference_mode(): |
|
|
output_loaded = model(**data) |
|
|
assert torch.allclose(output_after.logits, output_loaded.logits, atol=atol, rtol=rtol) |
|
|
|
|
|
|
|
|
model_running_mean = len([k for k in model.state_dict().keys() if "running_mean" in k]) |
|
|
state_dict = load_file(tmp_path / "adapter_model.safetensors") |
|
|
checkpoint_running_mean = len([k for k in state_dict.keys() if "running_mean" in k]) |
|
|
|
|
|
|
|
|
assert model_running_mean == checkpoint_running_mean * 2 |
|
|
|