# Copyright 2025-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This script provides a simple evaluation pipeline for multiple-choice reasoning datasets (e.g., BoolQ, HellaSwag, ARC, OpenBookQA, Winogrande) with different composition strategies. Usage examples: python arrow_phi3_mini.py --strategy base --ds_name arc-challenge python arrow_phi3_mini.py --strategy arrow --ds_name boolq python arrow_phi3_mini.py --strategy gks --ds_name hswag Key features: - Supports three strategies: • "base" → Evaluate the quantized base model directly • "arrow" → Use Arrow modular routing with task-specific adapters • "gks" → Use Arrow + GenKnowSub (subtracting general-domain knowledge) - Loads evaluation datasets from the Hugging Face Hub - Implements a batched evaluation loop that computes per-option likelihoods and selects the answer with the lowest average loss - Reports simple accuracy Implementation details: - The base model is quantized to 4-bit using `BitsAndBytesConfig` (nf4, bf16 compute). - For Arrow and GKS, task-specific adapters are loaded from the Hugging Face Hub: TahaBa/phi3-mini-clustered-flan/ts_expert_i - Task-specific adapters were trained on 10 clusters of FLAN tasks. - The clusters were created using Model-Based Clustering (MBC): 1. Train a LoRA adapter for each individual task. 2. Apply k-means clustering to group tasks based on these adapters. 3. Train a LoRA adapter for each resulting cluster. For more details, see the Arrow paper: https://huggingface.co/papers/2405.11157 - For GKS, general adapters are loaded from: TahaBa/phi3-mini-general-adapters/... - These adapters were trained on English, French, and German Wikipedia data using a causal language modeling objective with (507-token context → 5-token completion) pairs. - This setup encodes general knowledge into the LoRA space, which can then be subtracted from task-specific adapters during inference to isolate and purify them. For more details, see the GenKnowSub paper: https://huggingface.co/papers/2505.10939 - `evaluate_on_multi_choice_batched` handles tokenization, masking context tokens, and computing per-choice log-likelihoods for fair comparison. - Accuracy is printed at the end for the selected dataset. This script is mainly meant for demonstration purposes and lightweight evaluation, not full-scale benchmarking (batch size / max length can be tuned). ======================================================================================= Results (evaluated with microsoft/Phi-3-mini-4k-instruct, 4-bit quantization): | Dataset | Base Acc. | Arrow Acc. | Arrow+GKS Acc. | |--------------|-----------|------------|----------------| | ARC-Challenge| 0.4515 | 0.5418 | 0.5585 | | ARC-Easy | 0.6894 | 0.8404 | 0.8473 | | Winogrande | 0.5769 | 0.6550 | 0.6724 | | BoolQ | 0.8146 | 0.8030 | 0.8247 | | OpenBookQA | 0.43 | 0.448 | 0.472 | | HellaSwag | 0.7318 | 0.7150 | 0.7376 | Observations: - Arrow generally improves over the base model by routing tokens to the most relevant task adapters. - Applying GKS (general knowledge subtraction) consistently gives further gains compared to Arrow and Base. These numbers are not meant as leaderboard results, but as a sanity check to verify that the implementation works as expected and demonstrates the benefits of Arrow and GenKnowSub. """ import argparse import random import numpy as np import torch from datasets import load_dataset from sklearn.metrics import accuracy_score from tqdm import tqdm from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig from peft import ArrowConfig, create_arrow_model MODEL_NAME = "microsoft/Phi-3-mini-4k-instruct" MODEL_MAX_LEN = 2048 def parse_args(): parser = argparse.ArgumentParser(description="Training script with strategy selection") parser.add_argument( "--strategy", type=str, choices=["base", "arrow", "gks"], default="base", help="Training strategy to use: base, arrow, or gks", ) parser.add_argument( "--ds_name", type=str, choices=["boolq", "hswag", "arc-easy", "arc-challenge", "oqa", "wg"], default="arc-challenge", help="Dataset to use: boolq, hswag, arc-easy, arc-challenge, oqa, wg", ) return parser.parse_args() def read_test_dataset(ds_name): if ds_name == "boolq": ds = load_dataset("google/boolq", split="validation", trust_remote_code=True) elif ds_name == "hswag": ds = load_dataset("Rowan/hellaswag", split="validation", trust_remote_code=True) elif ds_name == "arc-challenge": ds = load_dataset("allenai/ai2_arc", "ARC-Challenge", split="validation", trust_remote_code=True) elif ds_name == "arc-easy": ds = load_dataset("allenai/ai2_arc", "ARC-Easy", split="validation", trust_remote_code=True) elif ds_name == "oqa": ds = load_dataset("allenai/openbookqa", split="validation", trust_remote_code=True) elif ds_name == "wg": ds = load_dataset("allenai/winogrande", "winogrande_xl", split="validation", trust_remote_code=True) else: raise f"Dataset {ds_name} is not supported yet." return ds def extract_input_content(ds_name, row): if ds_name == "boolq": return f"[passage]{row['passage']}[question]{row['question']}" if ds_name == "hswag": return row["ctx"] if (ds_name == "arc-challenge") or (ds_name == "arc-easy"): return row["question"] if ds_name == "oqa": return row["question_stem"] if ds_name == "wg": return row["sentence"] def create_multi_choice_options(row, ds_name): options_texts = [] content = extract_input_content(ds_name, row) if ds_name == "boolq": choices = ["true", "false"] if ds_name == "hswag": choices = row["endings"] if (ds_name == "arc-challenge") or (ds_name == "arc-easy"): choices = row["choices"]["text"] if ds_name == "wg": choices = [row["option1"], row["option2"]] if ds_name == "oqa": choices = row["choices"]["text"] for choice in choices: options_texts.append(f"<|user|>\n{content}<|end|>\n<|assistant|>{choice}<|end|>\n") return options_texts def extract_multi_choice_target_index(row, ds_name): if ds_name == "boolq": return 0 if row["answer"] is True else 1 if ds_name == "hswag": return int(row["label"]) if (ds_name == "arc-challenge") or (ds_name == "arc-easy"): return row["choices"]["label"].index(row["answerKey"]) if ds_name == "wg": return int(row["answer"]) - 1 if ds_name == "oqa": return row["choices"]["label"].index(row["answerKey"]) def set_seed(seed: int): random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) def compute_loglike_loss(logits, labels, reduction="none"): bs = logits.size(0) vocab_size = logits.size(-1) labels = labels.squeeze(-1) shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = torch.nn.CrossEntropyLoss(reduction=reduction) shift_logits = shift_logits.view(-1, vocab_size) shift_labels = shift_labels.view(-1) shift_labels = shift_labels.to(shift_logits.device) loss = loss_fct(shift_logits, shift_labels) # reshape back if reduction == "none": loss = loss.view((bs, -1)) non_zero_loss = (loss != 0).sum(dim=-1) non_zero_loss[non_zero_loss == 0] = 1 loss = loss.sum(dim=-1) / non_zero_loss return loss.float() # Convert to float32 before returning def evaluate_on_multi_choice_batched( eval_dataset, model, tokenizer, ds_name, labels, predictions, args, batch_size=32, max_length=512, device="cuda" ): # Local import to mirror your original function model.eval() for start in tqdm( range(0, len(eval_dataset), batch_size), total=(len(eval_dataset) + batch_size - 1) // batch_size ): rows = [eval_dataset[i] for i in range(start, min(start + batch_size, len(eval_dataset)))] # Build the flattened option texts for this batch all_texts = [] options_per_sample = [] # number of options for each sample ctx_lens_per_option = [] # context length replicated per option for row in rows: # options: ["<|user|>...<|assistant|>choiceA<|end|>", ...] options = create_multi_choice_options(row, ds_name) options_per_sample.append(len(options)) # compute context length once per sample (align with your -1 shift) content = extract_input_content(ds_name, row) context_prompt = f"<|user|>\n{content}<|end|>\n<|assistant|>" ctx_len = len(tokenizer.encode(context_prompt)) - 1 all_texts.extend(options) ctx_lens_per_option.extend([ctx_len] * len(options)) # collect gold label labels.append(extract_multi_choice_target_index(row, ds_name)) # Tokenize all options in one go tokenized = tokenizer( all_texts, return_tensors="pt", padding=True, truncation=True, max_length=max_length, ) tokenized = {k: v.to(device) for k, v in tokenized.items()} # Create masked labels: ignore context and padding masked_labels = tokenized["input_ids"].clone() for i, ctx_len in enumerate(ctx_lens_per_option): masked_labels[i, :ctx_len] = -100 masked_labels[tokenized["attention_mask"] == 0] = -100 with torch.no_grad(): logits = model(input_ids=tokenized["input_ids"], attention_mask=tokenized["attention_mask"]).logits # per-sequence losses losses = compute_loglike_loss(logits, masked_labels, reduction="none").detach().cpu() # Reduce per sample (argmin across its options) idx = 0 for n_opt in options_per_sample: pred = torch.argmin(losses[idx : idx + n_opt]).item() predictions.append(pred) idx += n_opt print( f"Accuracy for dataset {args.ds_name} and strategy {args.strategy} is: {accuracy_score(labels, predictions)}" ) if __name__ == "__main__": args = parse_args() print(f"Selected strategy: {args.strategy}") print(f"Dataset name: {args.ds_name}") # Loading the tokeniser tokenizer = AutoTokenizer.from_pretrained( MODEL_NAME, use_fast=True, padding_side="right", model_max_length=MODEL_MAX_LEN, ) # Quantisation config bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_use_double_quant=False, ) # Loading the model base_model = AutoModelForCausalLM.from_pretrained( MODEL_NAME, torch_dtype=torch.bfloat16, device_map="auto", quantization_config=bnb_config, ) # Loading the test dataset test_dataset = read_test_dataset(args.ds_name) print(f"{args.ds_name} is loaded with size: {len(test_dataset)}.") labels, predictions = [], [] if args.strategy == "base": # Batch-wise inference with torch.no_grad(): evaluate_on_multi_choice_batched( test_dataset, base_model, tokenizer, args.ds_name, labels, predictions, args, batch_size=64, # tune this max_length=512, # tune if options are long device="cuda", ) else: general_adapter_paths = [] if args.strategy == "gks": arrow_config = ArrowConfig( top_k=3, router_temperature=1.0, use_gks=True, ) # General adapter paths from the hub general_adapter_paths = [ "TahaBa/phi3-mini-general-adapters/cluster0_batch16_prop1.0_langen/checkpoint-17", "TahaBa/phi3-mini-general-adapters/cluster0_batch16_prop1.0_langfr/checkpoint-35", "TahaBa/phi3-mini-general-adapters/cluster0_batch16_prop1.0_langger/checkpoint-17", ] else: arrow_config = ArrowConfig( top_k=3, router_temperature=1.0, ) # Task-specific adapter paths from the hub task_specific_adapter_paths = [f"TahaBa/phi3-mini-clustered-flan/ts_expert_{i}" for i in range(10)] # Creating the Arrow model model = create_arrow_model( base_model=base_model, task_specific_adapter_paths=task_specific_adapter_paths, general_adapter_paths=general_adapter_paths, arrow_config=arrow_config, ) # Batch-wise inference with torch.no_grad(): evaluate_on_multi_choice_batched( test_dataset, model, tokenizer, args.ds_name, labels, predictions, args, batch_size=32, # tune this max_length=512, # tune if options are long device="cuda", )