PEFT_TYPE="boft" BLOCK_NUM=8 BLOCK_SIZE=0 N_BUTTERFLY_FACTOR=1 export DATASET_NAME="oftverse/control-celeba-hq" export PROJECT_NAME="controlnet_${PEFT_TYPE}" export RUN_NAME="${PEFT_TYPE}_${BLOCK_NUM}${BLOCK_SIZE}${N_BUTTERFLY_FACTOR}" export CONTROLNET_PATH="" export MODEL_NAME="stabilityai/stable-diffusion-2-1" # export MODEL_NAME="runwayml/stable-diffusion-v1-5" export OUTPUT_DIR="./output/${DATASET_NAME}/${RUN_NAME}" accelerate launch train_controlnet.py \ --pretrained_model_name_or_path=$MODEL_NAME \ --resume_from_checkpoint=$RESUME_PATH \ --controlnet_model_name_or_path=$CONTROLNET_PATH \ --output_dir=$OUTPUT_DIR \ --report_to="wandb" \ --dataset_name=$DATASET_NAME \ --resolution=512 \ --learning_rate=1e-5 \ --checkpointing_steps=500 \ --max_train_steps=50000 \ --validation_steps=5000 \ --num_validation_images=12 \ --train_batch_size=4 \ --dataloader_num_workers=2 \ --seed="0" \ --lr_scheduler="constant" \ --lr_warmup_steps=0 \ --wandb_project_name=$PROJECT_NAME \ --wandb_run_name=$RUN_NAME \ --enable_xformers_memory_efficient_attention \ --use_boft \ --boft_block_num=$BLOCK_NUM \ --boft_block_size=$BLOCK_SIZE \ --boft_n_butterfly_factor=$N_BUTTERFLY_FACTOR \ --boft_dropout=0.1 \ --boft_bias="boft_only" \