#!/usr/bin/env python # Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # The implementation is based on "Parameter-Efficient Orthogonal Finetuning # via Butterfly Factorization" (https://huggingface.co/papers/2311.06243) in ICLR 2024. import hashlib import itertools import logging import math import os from contextlib import nullcontext from pathlib import Path import datasets import diffusers import numpy as np import torch import torch.nn.functional as F import torch.utils.checkpoint import transformers from accelerate import Accelerator from accelerate.logging import get_logger from accelerate.utils import ProjectConfiguration, set_seed from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, UNet2DConditionModel, ) from diffusers.optimization import get_scheduler from diffusers.utils import check_min_version from diffusers.utils.import_utils import is_xformers_available from huggingface_hub import Repository from tqdm.auto import tqdm from transformers import AutoTokenizer from utils.args_loader import ( get_full_repo_name, import_model_class_from_model_name_or_path, parse_args, ) from utils.dataset import DreamBoothDataset, PromptDataset, collate_fn from utils.tracemalloc import TorchTracemalloc, b2mb from peft import BOFTConfig, get_peft_model # Will error if the minimal version of diffusers is not installed. Remove at your own risks. check_min_version("0.16.0.dev0") logger = get_logger(__name__) UNET_TARGET_MODULES = ["to_q", "to_v", "to_k", "query", "value", "key", "to_out.0", "add_k_proj", "add_v_proj"] TEXT_ENCODER_TARGET_MODULES = ["q_proj", "v_proj"] def save_adaptor(accelerator, step, unet, text_encoder, args): unwarpped_unet = accelerator.unwrap_model(unet) unwarpped_unet.save_pretrained( os.path.join(args.output_dir, f"unet/{step}"), state_dict=accelerator.get_state_dict(unet) ) if args.train_text_encoder: unwarpped_text_encoder = accelerator.unwrap_model(text_encoder) unwarpped_text_encoder.save_pretrained( os.path.join(args.output_dir, f"text_encoder/{step}"), state_dict=accelerator.get_state_dict(text_encoder), ) def main(args): validation_prompts = list(filter(None, args.validation_prompt[0].split("."))) logging_dir = Path(args.output_dir, args.logging_dir) accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir) accelerator = Accelerator( gradient_accumulation_steps=args.gradient_accumulation_steps, mixed_precision=args.mixed_precision, log_with=args.report_to, project_dir=accelerator_project_config, ) if args.report_to == "wandb": import wandb wandb_init = { "wandb": { "name": args.wandb_run_name, "mode": "online", } } # Currently, it's not possible to do gradient accumulation when training two models with accelerate.accumulate # This will be enabled soon in accelerate. For now, we don't allow gradient accumulation when training two models. # TODO (patil-suraj): Remove this check when gradient accumulation with two models is enabled in accelerate. if args.train_text_encoder and args.gradient_accumulation_steps > 1 and accelerator.num_processes > 1: raise ValueError( "Gradient accumulation is not supported when training the text encoder in distributed training. " "Please set gradient_accumulation_steps to 1. This feature will be supported in the future." ) # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger.info(accelerator.state, main_process_only=False) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() diffusers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() diffusers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. global_seed = hash(args.wandb_run_name) % (2**32) set_seed(global_seed) # Generate class images if prior preservation is enabled. if args.with_prior_preservation: class_images_dir = Path(args.class_data_dir) if not class_images_dir.exists(): class_images_dir.mkdir(parents=True) cur_class_images = len(list(class_images_dir.iterdir())) if cur_class_images < args.num_class_images: torch_dtype = torch.float16 if accelerator.device.type in ["cuda", "xpu"] else torch.float32 if args.prior_generation_precision == "fp32": torch_dtype = torch.float32 elif args.prior_generation_precision == "fp16": torch_dtype = torch.float16 elif args.prior_generation_precision == "bf16": torch_dtype = torch.bfloat16 pipeline = DiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, torch_dtype=torch_dtype, safety_checker=None, revision=args.revision, ) pipeline.set_progress_bar_config(disable=True) num_new_images = args.num_class_images - cur_class_images logger.info(f"Number of class images to sample: {num_new_images}.") sample_dataset = PromptDataset(args.class_prompt, num_new_images) sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=args.sample_batch_size) sample_dataloader = accelerator.prepare(sample_dataloader) pipeline.to(accelerator.device) for example in tqdm( sample_dataloader, desc="Generating class images", disable=not accelerator.is_local_main_process ): images = pipeline(example["prompt"]).images for i, image in enumerate(images): hash_image = hashlib.sha1(image.tobytes()).hexdigest() image_filename = class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg" image.save(image_filename) del pipeline if torch.cuda.is_available(): torch.cuda.empty_cache() elif torch.xpu.is_available(): torch.xpu.empty_cache() # Handle the repository creation if accelerator.is_main_process: if args.push_to_hub: if args.hub_model_id is None: repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token) else: repo_name = args.hub_model_id repo = Repository(args.output_dir, clone_from=repo_name) # noqa: F841 with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore: if "step_*" not in gitignore: gitignore.write("step_*\n") if "epoch_*" not in gitignore: gitignore.write("epoch_*\n") elif args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=True) # Load the tokenizer if args.tokenizer_name: tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, revision=args.revision, use_fast=False) elif args.pretrained_model_name_or_path: tokenizer = AutoTokenizer.from_pretrained( args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision, use_fast=False, ) # import correct text encoder class text_encoder_cls = import_model_class_from_model_name_or_path(args.pretrained_model_name_or_path, args.revision) # Load scheduler and models noise_scheduler = DDIMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") text_encoder = text_encoder_cls.from_pretrained( args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision ) vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision) unet = UNet2DConditionModel.from_pretrained( args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision ) if args.use_boft: config = BOFTConfig( boft_block_size=args.boft_block_size, boft_block_num=args.boft_block_num, boft_n_butterfly_factor=args.boft_n_butterfly_factor, target_modules=UNET_TARGET_MODULES, boft_dropout=args.boft_dropout, bias=args.boft_bias, ) unet = get_peft_model(unet, config, adapter_name=args.wandb_run_name) unet.print_trainable_parameters() vae.requires_grad_(False) unet.train() if args.train_text_encoder and args.use_boft: config = BOFTConfig( boft_block_size=args.boft_block_size, boft_block_num=args.boft_block_num, boft_n_butterfly_factor=args.boft_n_butterfly_factor, target_modules=TEXT_ENCODER_TARGET_MODULES, boft_dropout=args.boft_dropout, bias=args.boft_bias, ) text_encoder = get_peft_model(text_encoder, config, adapter_name=args.wandb_run_name) text_encoder.print_trainable_parameters() text_encoder.train() else: text_encoder.requires_grad_(False) # For mixed precision training we cast the text_encoder and vae weights to half-precision # as these models are only used for inference, keeping weights in full precision is not required. weight_dtype = torch.float32 if accelerator.mixed_precision == "fp16": weight_dtype = torch.float16 elif accelerator.mixed_precision == "bf16": weight_dtype = torch.bfloat16 # Move unet, vae and text_encoder to device and cast to weight_dtype unet.to(accelerator.device, dtype=weight_dtype) vae.to(accelerator.device, dtype=weight_dtype) text_encoder.to(accelerator.device, dtype=weight_dtype) if args.enable_xformers_memory_efficient_attention: if accelerator.device.type == "xpu": logger.warn("XPU hasn't support xformers yet, ignore it.") elif is_xformers_available(): unet.enable_xformers_memory_efficient_attention() else: raise ValueError("xformers is not available. Make sure it is installed correctly") if args.gradient_checkpointing: unet.enable_gradient_checkpointing() # below fails when using boft so commenting it out if args.train_text_encoder and not args.use_boft: text_encoder.gradient_checkpointing_enable() # Enable TF32 for faster training on Ampere GPUs, # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices if args.allow_tf32 and torch.cuda.is_available(): torch.backends.cuda.matmul.allow_tf32 = True if args.scale_lr: args.learning_rate = ( args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes ) # Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs if args.use_8bit_adam: try: import bitsandbytes as bnb except ImportError: raise ImportError( "To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`." ) optimizer_class = bnb.optim.AdamW8bit else: optimizer_class = torch.optim.AdamW # Optimizer creation params_to_optimize = [param for param in unet.parameters() if param.requires_grad] if args.train_text_encoder: params_to_optimize += [param for param in text_encoder.parameters() if param.requires_grad] optimizer = optimizer_class( params_to_optimize, lr=args.learning_rate, betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay, eps=args.adam_epsilon, ) # Download the official dreambooth dataset from the official repository: https://github.com/google/dreambooth.git data_path = os.path.join(os.getcwd(), "data", "dreambooth") if not os.path.exists(data_path): os.makedirs(os.path.join(os.getcwd(), "data"), exist_ok=True) os.system(f"git clone https://github.com/google/dreambooth.git '{data_path}'") # Dataset and DataLoaders creation: train_dataset = DreamBoothDataset( instance_data_root=args.instance_data_dir, instance_prompt=args.instance_prompt, class_data_root=args.class_data_dir if args.with_prior_preservation else None, class_prompt=args.class_prompt, tokenizer=tokenizer, size=args.resolution, center_crop=args.center_crop, ) train_dataloader = torch.utils.data.DataLoader( train_dataset, batch_size=args.train_batch_size, shuffle=True, collate_fn=lambda examples: collate_fn(examples, args.with_prior_preservation), num_workers=args.num_dataloader_workers, ) # Scheduler and math around the number of training steps. overrode_max_train_steps = False num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if args.max_train_steps is None: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch overrode_max_train_steps = True lr_scheduler = get_scheduler( args.lr_scheduler, optimizer=optimizer, num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps, num_training_steps=args.max_train_steps * args.gradient_accumulation_steps, num_cycles=args.lr_num_cycles, power=args.lr_power, ) # Prepare everything with our `accelerator`. if args.train_text_encoder: unet, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( unet, text_encoder, optimizer, train_dataloader, lr_scheduler ) else: unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( unet, optimizer, train_dataloader, lr_scheduler ) # For mixed precision training we cast the text_encoder and vae weights to half-precision # as these models are only used for inference, keeping weights in full precision is not required. weight_dtype = torch.float32 if accelerator.mixed_precision == "fp16": weight_dtype = torch.float16 elif accelerator.mixed_precision == "bf16": weight_dtype = torch.bfloat16 # Move vae and text_encoder to device and cast to weight_dtype vae.to(accelerator.device, dtype=weight_dtype) if not args.train_text_encoder: text_encoder.to(accelerator.device, dtype=weight_dtype) # We need to recalculate our total training steps as the size of the training dataloader may have changed. num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if overrode_max_train_steps: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch # Afterwards we recalculate our number of training epochs args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) # We need to initialize the trackers we use, and also store our configuration. # The trackers initializes automatically on the main process. if accelerator.is_main_process: accelerator.init_trackers(args.wandb_project_name, config=vars(args), init_kwargs=wandb_init) # Train! total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps logger.info("***** Running training *****") logger.info(f" Num examples = {len(train_dataset)}") logger.info(f" Num batches each epoch = {len(train_dataloader)}") logger.info(f" Num Epochs = {args.num_train_epochs}") logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") logger.info(f" Total optimization steps = {args.max_train_steps}") global_step = 0 first_epoch = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint != "latest": path = os.path.basename(args.resume_from_checkpoint) else: # Get the most recent checkpoint dirs = os.listdir(args.output_dir) dirs = [d for d in dirs if d.startswith("checkpoint")] dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) path = dirs[-1] if len(dirs) > 0 else None accelerator.print(f"Resuming from checkpoint {path}") accelerator.load_state(os.path.join(args.output_dir, path)) global_step = int(path.split("-")[1]) resume_global_step = global_step * args.gradient_accumulation_steps first_epoch = resume_global_step // num_update_steps_per_epoch resume_step = resume_global_step % num_update_steps_per_epoch # Only show the progress bar once on each machine. progress_bar = tqdm(range(global_step, args.max_train_steps), disable=not accelerator.is_local_main_process) progress_bar.set_description("Steps") if args.train_text_encoder: text_encoder.train() for epoch in range(first_epoch, args.num_train_epochs): unet.train() with TorchTracemalloc() if not args.no_tracemalloc else nullcontext() as tracemalloc: for step, batch in enumerate(train_dataloader): # Skip steps until we reach the resumed step if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step: if step % args.gradient_accumulation_steps == 0: progress_bar.update(1) if args.report_to == "wandb": accelerator.print(progress_bar) continue with accelerator.accumulate(unet): # Convert images to latent space latents = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample() latents = latents * vae.config.scaling_factor # Sample noise that we'll add to the latents noise = torch.randn_like(latents) bsz = latents.shape[0] # Sample a random timestep for each image timesteps = torch.randint( 0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device ) timesteps = timesteps.long() # Add noise to the latents according to the noise magnitude at each timestep # (this is the forward diffusion process) noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) # Get the text embedding for conditioning encoder_hidden_states = text_encoder(batch["input_ids"])[0] # Predict the noise residual model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample # Get the target for loss depending on the prediction type if noise_scheduler.config.prediction_type == "epsilon": target = noise elif noise_scheduler.config.prediction_type == "v_prediction": target = noise_scheduler.get_velocity(latents, noise, timesteps) else: raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") if args.with_prior_preservation: # Chunk the noise and model_pred into two parts and compute the loss on each part separately. model_pred, model_pred_prior = torch.chunk(model_pred, 2, dim=0) target, target_prior = torch.chunk(target, 2, dim=0) # Compute instance loss loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") # Compute prior loss prior_loss = F.mse_loss(model_pred_prior.float(), target_prior.float(), reduction="mean") # Add the prior loss to the instance loss. loss = loss + args.prior_loss_weight * prior_loss else: loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") accelerator.backward(loss) if accelerator.sync_gradients: params_to_clip = ( itertools.chain(unet.parameters(), text_encoder.parameters()) if args.train_text_encoder else unet.parameters() ) accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # Checks if the accelerator has performed an optimization step behind the scenes if accelerator.sync_gradients: progress_bar.update(1) if args.report_to == "wandb": accelerator.print(progress_bar) global_step += 1 if global_step % args.checkpointing_steps == 0 and global_step != 0: if accelerator.is_main_process: save_adaptor(accelerator, global_step, unet, text_encoder, args) logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} progress_bar.set_postfix(**logs) accelerator.log(logs, step=global_step) if ( args.validation_prompt is not None and (step + num_update_steps_per_epoch * epoch) % args.validation_steps == 0 and global_step > 10 ): unet.eval() logger.info( f"Running validation... \n Generating {len(validation_prompts)} images with prompt:" f" {validation_prompts[0]}, ......" ) # create pipeline pipeline = DiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, safety_checker=None, revision=args.revision, ) # set `keep_fp32_wrapper` to True because we do not want to remove # mixed precision hooks while we are still training pipeline.unet = accelerator.unwrap_model(unet, keep_fp32_wrapper=True) pipeline.text_encoder = accelerator.unwrap_model(text_encoder, keep_fp32_wrapper=True) pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config) pipeline = pipeline.to(accelerator.device) pipeline.set_progress_bar_config(disable=True) # run inference if args.seed is not None: generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) else: generator = None # images = [] # for _ in range(args.num_validation_images): # image = pipeline(args.validation_prompt, num_inference_steps=25, generator=generator).images[0] # images.append(image) images = [] val_img_dir = os.path.join( args.output_dir, f"validation/{global_step}", args.wandb_run_name, ) os.makedirs(val_img_dir, exist_ok=True) for val_promot in validation_prompts: image = pipeline(val_promot, num_inference_steps=50, generator=generator).images[0] image.save(os.path.join(val_img_dir, f"{'_'.join(val_promot.split(' '))}.png"[1:])) images.append(image) for tracker in accelerator.trackers: if tracker.name == "tensorboard": np_images = np.stack([np.asarray(img) for img in images]) tracker.writer.add_images("validation", np_images, epoch, dataformats="NHWC") if tracker.name == "wandb": import wandb tracker.log( { "validation": [ wandb.Image(image, caption=f"{i}: {validation_prompts[i]}") for i, image in enumerate(images) ] } ) del pipeline if torch.cuda.is_available(): torch.cuda.empty_cache() elif torch.xpu.is_available(): torch.xpu.empty_cache() if global_step >= args.max_train_steps: break # Printing the accelerator memory usage details such as allocated memory, peak memory, and total memory usage if not args.no_tracemalloc: accelerator.print( f"{accelerator.device.type.upper()} Memory before entering the train : {b2mb(tracemalloc.begin)}" ) accelerator.print( f"{accelerator.device.type.upper()} Memory consumed at the end of the train (end-begin): {tracemalloc.used}" ) accelerator.print( f"{accelerator.device.type.upper()} Peak Memory consumed during the train (max-begin): {tracemalloc.peaked}" ) accelerator.print( f"{accelerator.device.type.upper()} Total Peak Memory consumed during the train (max): {tracemalloc.peaked + b2mb(tracemalloc.begin)}" ) accelerator.print(f"CPU Memory before entering the train : {b2mb(tracemalloc.cpu_begin)}") accelerator.print(f"CPU Memory consumed at the end of the train (end-begin): {tracemalloc.cpu_used}") accelerator.print(f"CPU Peak Memory consumed during the train (max-begin): {tracemalloc.cpu_peaked}") accelerator.print( f"CPU Total Peak Memory consumed during the train (max): {tracemalloc.cpu_peaked + b2mb(tracemalloc.cpu_begin)}" ) if args.push_to_hub: repo.push_to_hub(commit_message="End of training", blocking=False, auto_lfs_prune=True) accelerator.end_training() if __name__ == "__main__": args = parse_args() main(args)