# Copyright 2025-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from dataclasses import dataclass, field from typing import Literal, Optional import torch from datasets import load_dataset from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser from trl import SFTConfig, SFTTrainer from peft import MissConfig, get_peft_model @dataclass class ScriptArguments(SFTConfig): # model configs base_model_name_or_path: Optional[str] = field( default=None, metadata={"help": "The name or path of the fp32/16 base model."} ) bits: str = field(default="bf16", metadata={"help": "(`['bf16', 'fp16', fp32]`)"}) init_weights: Literal[True, "bat"] = field( default=True, metadata={ "help": ( "True -> MiSS efficience and balance; `bat` -> Bat, `mini` -> smaller MiSS efficience and balance" ), }, ) miss_r: int = field(default=16) merge_and_save: bool = field(default=False) # dataset configs data_path: str = field(default="imdb", metadata={"help": "Path to the training data."}) dataset_split: str = field(default="train[:1%]", metadata={"help": "(`['train', 'test', 'eval']`):"}) dataset_field: list[str] = field(default=None, metadata={"help": "Fields of dataset input and output."}) parser = HfArgumentParser(ScriptArguments) script_args = parser.parse_args_into_dataclasses()[0] print(script_args) print(f"Load pre-processed residual model in {script_args.bits} bits.") if script_args.bits in ["nf4", "fp4", "int8"]: print("MiSS currently does not support quantization.") elif script_args.base_model_name_or_path is not None: print(f"No available pre-processed model, manually initialize a MiSS using {script_args.base_model_name_or_path}.") model = AutoModelForCausalLM.from_pretrained( script_args.base_model_name_or_path, torch_dtype=( torch.float16 if script_args.bits == "fp16" else (torch.bfloat16 if script_args.bits == "bf16" else torch.float32) ), device_map="auto", ) tokenizer = AutoTokenizer.from_pretrained(script_args.base_model_name_or_path) tokenizer.pad_token_id = tokenizer.eos_token_id miss_config = MissConfig( r=script_args.miss_r, target_modules=["q_proj", "o_proj", "k_proj", "v_proj", "gate_proj", "up_proj", "down_proj"], bias="none", task_type="CAUSAL_LM", init_weights=script_args.init_weights, ) peft_model = get_peft_model(model, miss_config) print(peft_model) peft_model.print_trainable_parameters() print(f"Training MiSS with trl on the {script_args.data_path}[{script_args.dataset_split}] dataset.") dataset = load_dataset(script_args.data_path, split=script_args.dataset_split) dataset = dataset.map( lambda example: { "text": f"### USER: {example[script_args.dataset_field[0]]}\n### ASSISTANT: {example[script_args.dataset_field[1]]}" } ) trainer = SFTTrainer( model=peft_model, args=script_args, train_dataset=dataset, processing_class=tokenizer, ) trainer.train() trainer.save_state() peft_model.save_pretrained( os.path.join(script_args.output_dir, "miss_ft"), ) if script_args.merge_and_save: model = peft_model.merge_and_unload() model.save_pretrained(os.path.join(script_args.output_dir, "miss_merged")) tokenizer.save_pretrained(os.path.join(script_args.output_dir, "miss_merged"))