# Copyright 2025-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This test file is for tests specific to RandLora, since Randlora has some specific challenges due to the shared weights. # These tests are copied from the test_vera.py file import os import pytest import torch from accelerate.utils.imports import is_bf16_available from safetensors import safe_open from torch import nn from peft import PeftModel, RandLoraConfig, get_peft_model class MLP(nn.Module): def __init__(self, bias=True): super().__init__() self.relu = nn.ReLU() self.lin0 = nn.Linear(10, 20, bias=bias) self.lin1 = nn.Linear(20, 20, bias=bias) # lin1 and lin2 have same shape self.lin2 = nn.Linear(20, 20, bias=bias) self.lin3 = nn.Linear(20, 2, bias=bias) self.sm = nn.LogSoftmax(dim=-1) def forward(self, X): X = self.lin0(X) X = self.relu(X) X = self.lin1(X) X = self.relu(X) X = self.lin2(X) X = self.relu(X) X = self.lin3(X) X = self.sm(X) return X # Tests copied from the TestVera class in test_vera.py. # Changes to the code file should be reflected here. class TestRandLora: @pytest.fixture def mlp(self): torch.manual_seed(0) model = MLP() return model @pytest.fixture def mlp_same_prng(self, mlp): torch.manual_seed(0) config = RandLoraConfig(target_modules=["lin1", "lin2"], init_weights=False) # creates a default RandLora adapter peft_model = get_peft_model(mlp, config) config2 = RandLoraConfig(target_modules=["lin1", "lin2"], init_weights=False) peft_model.add_adapter("other", config2) return peft_model def test_multiple_adapters_same_prng_weights(self, mlp_same_prng): # we can have multiple adapters with the same prng key, in which case the weights should be shared assert ( mlp_same_prng.base_model.model.lin1.randlora_A["default"] is mlp_same_prng.base_model.model.lin1.randlora_A["other"] ) assert ( mlp_same_prng.base_model.model.lin1.randlora_B["default"] is mlp_same_prng.base_model.model.lin1.randlora_B["other"] ) assert ( mlp_same_prng.base_model.model.lin2.randlora_A["default"] is mlp_same_prng.base_model.model.lin2.randlora_A["other"] ) assert ( mlp_same_prng.base_model.model.lin2.randlora_B["default"] is mlp_same_prng.base_model.model.lin2.randlora_B["other"] ) input = torch.randn(5, 10) mlp_same_prng.set_adapter("default") output_default = mlp_same_prng(input) mlp_same_prng.set_adapter("other") output_other = mlp_same_prng(input) assert not torch.allclose(output_default, output_other, atol=1e-3, rtol=1e-3) def test_multiple_adapters_different_prng_raises(self): # we cannot have multiple adapters with different prng keys model = MLP() config = RandLoraConfig(target_modules=["lin1", "lin2"], init_weights=False) # creates a default RandLora adapter peft_model = get_peft_model(model, config) config2 = RandLoraConfig(target_modules=["lin1", "lin2"], init_weights=False, projection_prng_key=123) msg = ( r"RandLora PRNG initialisation key must be the same for all adapters. Got config.projection_prng_key=123 but " r"previous config had 0" ) with pytest.raises(ValueError, match=msg): peft_model.add_adapter("other", config2) def test_multiple_adapters_save_load_save_projection_true(self, mlp_same_prng, tmp_path): # check saving and loading works with multiple adapters and saved projection weights torch.manual_seed(0) input = torch.randn(5, 10) mlp_same_prng.set_adapter("default") output_default = mlp_same_prng(input) mlp_same_prng.set_adapter("other") output_other = mlp_same_prng(input) # sanity check assert not torch.allclose(output_default, output_other, atol=1e-3, rtol=1e-3) save_path = tmp_path / "randlora" mlp_same_prng.save_pretrained(save_path) assert os.path.exists(save_path / "adapter_config.json") assert os.path.exists(save_path / "other" / "adapter_config.json") torch.manual_seed(0) mlp = MLP() peft_model = PeftModel.from_pretrained(mlp, save_path) peft_model.load_adapter(save_path / "other", "other") peft_model.set_adapter("default") output_default_loaded = peft_model(input) peft_model.set_adapter("other") output_other_loaded = peft_model(input) assert torch.allclose(output_default, output_default_loaded, atol=1e-3, rtol=1e-3) assert torch.allclose(output_other, output_other_loaded, atol=1e-3, rtol=1e-3) def test_multiple_adapters_save_load_save_projection_false(self, mlp, tmp_path): # check saving and loading works with multiple adapters without saved projection weights torch.manual_seed(1) config = RandLoraConfig(target_modules=["lin1", "lin2"], init_weights=False, save_projection=False) # creates a default RandLora adapter peft_model = get_peft_model(mlp, config, adapter_name="first") config2 = RandLoraConfig(target_modules=["lin1", "lin2"], init_weights=False, save_projection=False) peft_model.add_adapter("second", config2) input = torch.randn(5, 10) peft_model.set_adapter("first") output_first = peft_model(input) peft_model.set_adapter("second") output_second = peft_model(input) # sanity check assert not torch.allclose(output_first, output_second, atol=1e-3, rtol=1e-3) save_path = tmp_path / "randlora" peft_model.save_pretrained(save_path) assert os.path.exists(save_path / "first" / "adapter_config.json") assert os.path.exists(save_path / "second" / "adapter_config.json") torch.manual_seed(0) mlp = MLP() peft_model = PeftModel.from_pretrained(mlp, save_path / "first", adapter_name="first") peft_model.load_adapter(save_path / "second", "second") peft_model.set_adapter("first") output_first_loaded = peft_model(input) peft_model.set_adapter("second") output_second_loaded = peft_model(input) assert torch.allclose(output_first, output_first_loaded, atol=1e-3, rtol=1e-3) assert torch.allclose(output_second, output_second_loaded, atol=1e-3, rtol=1e-3) def test_multiple_adapters_save_projection_true_contains_randlora_A_randlora_B(self, mlp_same_prng, tmp_path): # check that the state_dicts don't contain the projection weights save_path = tmp_path / "randlora" mlp_same_prng.save_pretrained(save_path) sd_default = {} with safe_open(save_path / "adapter_model.safetensors", framework="pt", device="cpu") as f: for key in f.keys(): sd_default[key] = f.get_tensor(key) assert any("randlora_A" in key for key in sd_default) assert any("randlora_B" in key for key in sd_default) # default rank for RandLora is 32 assert sd_default["base_model.randlora_A"].shape == (32, 1, 20) assert sd_default["base_model.randlora_B"].shape == (20, 1, 32) sd_other = {} with safe_open(save_path / "other" / "adapter_model.safetensors", framework="pt", device="cpu") as f: for key in f.keys(): sd_other[key] = f.get_tensor(key) assert any("randlora_A" in key for key in sd_other) assert any("randlora_B" in key for key in sd_other) assert sd_other["base_model.randlora_A"].shape == (32, 1, 20) assert sd_other["base_model.randlora_B"].shape == (20, 1, 32) def test_multiple_adapters_save_projection_false_contains_no_randlora_A_randlora_B(self, mlp, tmp_path): torch.manual_seed(1) config = RandLoraConfig(target_modules=["lin1", "lin2"], init_weights=False, save_projection=False) # creates a default RandLora adapter peft_model = get_peft_model(mlp, config, adapter_name="first") config2 = RandLoraConfig(target_modules=["lin1", "lin2"], init_weights=False, save_projection=False) peft_model.add_adapter("second", config2) save_path = tmp_path / "randlora" peft_model.save_pretrained(save_path) sd_default = {} with safe_open(save_path / "first" / "adapter_model.safetensors", framework="pt", device="cpu") as f: for key in f.keys(): sd_default[key] = f.get_tensor(key) assert not any("randlora_A" in key for key in sd_default) assert not any("randlora_B" in key for key in sd_default) sd_other = {} with safe_open(save_path / "second" / "adapter_model.safetensors", framework="pt", device="cpu") as f: for key in f.keys(): sd_other[key] = f.get_tensor(key) assert not any("randlora_A" in key for key in sd_other) assert not any("randlora_B" in key for key in sd_other) def test_randlora_A_randlora_B_share_memory(self, mlp_same_prng): randlora_A = mlp_same_prng.randlora_A["default"] randlora_B = mlp_same_prng.randlora_B["default"] # these tensors should share the same data assert randlora_A.data_ptr() == mlp_same_prng.base_model.model.lin1.randlora_A["default"].data_ptr() assert randlora_B.data_ptr() == mlp_same_prng.base_model.model.lin1.randlora_B["default"].data_ptr() assert randlora_A.data_ptr() == mlp_same_prng.base_model.model.lin2.randlora_A["default"].data_ptr() assert randlora_B.data_ptr() == mlp_same_prng.base_model.model.lin2.randlora_B["default"].data_ptr() # sanity check: these tensors shouldn't share the same data assert randlora_A.data_ptr() != randlora_B.data_ptr() def test_randlora_lambda_dont_share_memory(self, mlp_same_prng): # sanity check: these tensors shouldn't share the same data assert ( mlp_same_prng.base_model.model.lin1.randlora_lambda["default"].data_ptr() != mlp_same_prng.base_model.model.lin1.randlora_lambda["other"].data_ptr() ) assert ( mlp_same_prng.base_model.model.lin1.randlora_lambda["default"].data_ptr() != mlp_same_prng.base_model.model.lin2.randlora_lambda["default"].data_ptr() ) assert ( mlp_same_prng.base_model.model.lin1.randlora_lambda["other"].data_ptr() != mlp_same_prng.base_model.model.lin2.randlora_lambda["other"].data_ptr() ) assert ( mlp_same_prng.base_model.model.lin1.randlora_gamma["default"].data_ptr() != mlp_same_prng.base_model.model.lin1.randlora_gamma["other"].data_ptr() ) assert ( mlp_same_prng.base_model.model.lin1.randlora_gamma["default"].data_ptr() != mlp_same_prng.base_model.model.lin2.randlora_gamma["default"].data_ptr() ) assert ( mlp_same_prng.base_model.model.lin1.randlora_gamma["other"].data_ptr() != mlp_same_prng.base_model.model.lin2.randlora_gamma["other"].data_ptr() ) def test_randlora_different_shapes(self, mlp): config = RandLoraConfig(target_modules=["lin0", "lin3"], init_weights=False) mlp_different_shapes = get_peft_model(mlp, config) randlora_A = mlp_different_shapes.randlora_A["default"] randlora_B = mlp_different_shapes.randlora_B["default"] # sanity check assert mlp.lin0.base_layer.weight.shape != mlp.lin3.base_layer.weight.shape # lin0 has the largest output dimension, lin3 has the largest input dimension # randlora_A should have the shape of (rank, largest_in), randlora_B should have the shape of (largest_out, rank) assert randlora_A.shape == (config.r, 1, mlp.lin3.in_features) assert randlora_B.shape == (mlp.lin0.out_features, 1, config.r) # should not raise input = torch.randn(5, 10) mlp_different_shapes(input) @pytest.mark.parametrize("dtype", [torch.float32, torch.float16, torch.bfloat16]) def test_randlora_dtypes(self, dtype): if dtype == torch.bfloat16: # skip if bf16 is not supported on hardware, see #1872 if not is_bf16_available(): pytest.skip("bfloat16 not supported on this system, skipping the test") model = MLP().to(dtype) config = RandLoraConfig(target_modules=["lin1", "lin2"], init_weights=False) peft_model = get_peft_model(model, config) inputs = torch.randn(5, 10).to(dtype) output = peft_model(inputs) # should not raise assert output.dtype == dtype