# Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import torch from transformers import AutoModelForCausalLM, AutoTokenizer from peft import LoraConfig, get_peft_model parser = argparse.ArgumentParser(description="Merge Adapter to Base Model") parser.add_argument( "--base_model_name_or_path", help="The name or path of the fp32/16 base model.", ) parser.add_argument("--output_dir", type=str, help="The directory to save the PiSSA model.") parser.add_argument("--bits", type=str, default="bf16", choices=["bf16", "fp16", "fp32"]) parser.add_argument( "--init_lora_weights", type=str, default="pissa", help="(`['pissa', 'pissa_niter_[number of iters]']`)" ) parser.add_argument("--lora_r", type=int, default=128) parser.add_argument("--lora_alpha", type=int, default=128) parser.add_argument("--lora_dropout", type=int, default=0) script_args = parser.parse_args() print(script_args) model = AutoModelForCausalLM.from_pretrained( script_args.base_model_name_or_path, torch_dtype=( torch.float16 if script_args.bits == "fp16" else (torch.bfloat16 if script_args.bits == "bf16" else torch.float32) ), device_map="auto", ) tokenizer = AutoTokenizer.from_pretrained(script_args.base_model_name_or_path) tokenizer.pad_token_id = tokenizer.eos_token_id lora_config = LoraConfig( r=script_args.lora_r, lora_alpha=script_args.lora_alpha, init_lora_weights=script_args.init_lora_weights, lora_dropout=script_args.lora_dropout, target_modules=["q_proj", "o_proj", "k_proj", "v_proj", "gate_proj", "up_proj", "down_proj"], bias="none", task_type="CAUSAL_LM", ) peft_model = get_peft_model(model, lora_config) # Save PiSSA modules: peft_model.peft_config["default"].init_lora_weights = True peft_model.save_pretrained(os.path.join(script_args.output_dir, "pissa_init")) # Save residual model: peft_model = peft_model.unload() peft_model.save_pretrained(script_args.output_dir) # Save the tokenizer: tokenizer.save_pretrained(script_args.output_dir)