# Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tempfile import pytest import torch from transformers import AutoModelForSeq2SeqLM, AutoModelForTokenClassification from peft import ( AdaLoraConfig, BOFTConfig, BoneConfig, C3AConfig, FourierFTConfig, HRAConfig, IA3Config, LoraConfig, MissConfig, OFTConfig, PrefixTuningConfig, PromptEncoderConfig, PromptTuningConfig, RoadConfig, ShiraConfig, TaskType, VBLoRAConfig, VeraConfig, WaveFTConfig, get_peft_model, ) from .testing_common import PeftCommonTester from .testing_utils import set_init_weights_false PEFT_ENCODER_DECODER_MODELS_TO_TEST = [ "ybelkada/tiny-random-T5ForConditionalGeneration-calibrated", "hf-internal-testing/tiny-random-BartForConditionalGeneration", ] # TODO Missing from this list are LoKr, LoHa, LN Tuning, add them ALL_CONFIGS = [ ( AdaLoraConfig, { "target_modules": None, "total_step": 1, "task_type": "SEQ_2_SEQ_LM", }, ), ( BOFTConfig, { "target_modules": None, "task_type": "SEQ_2_SEQ_LM", }, ), ( BoneConfig, { "target_modules": None, "r": 2, "task_type": "SEQ_2_SEQ_LM", }, ), ( MissConfig, { "target_modules": None, "r": 2, "task_type": "SEQ_2_SEQ_LM", }, ), ( FourierFTConfig, { "n_frequency": 10, "target_modules": None, "task_type": "SEQ_2_SEQ_LM", }, ), ( HRAConfig, { "target_modules": None, "task_type": "SEQ_2_SEQ_LM", }, ), ( IA3Config, { "target_modules": None, "feedforward_modules": None, "task_type": "SEQ_2_SEQ_LM", }, ), ( LoraConfig, { "r": 8, "lora_alpha": 32, "target_modules": None, "lora_dropout": 0.05, "bias": "none", "task_type": "SEQ_2_SEQ_LM", }, ), ( LoraConfig, { "r": 8, "lora_alpha": 32, "target_modules": None, "lora_dropout": 0.05, "bias": "none", "trainable_token_indices": [0, 1, 3], "task_type": "SEQ_2_SEQ_LM", }, ), ( OFTConfig, { "target_modules": None, "task_type": "SEQ_2_SEQ_LM", }, ), ( PrefixTuningConfig, { "num_virtual_tokens": 10, "task_type": "SEQ_2_SEQ_LM", }, ), ( PromptEncoderConfig, { "num_virtual_tokens": 10, "encoder_hidden_size": 32, "task_type": "SEQ_2_SEQ_LM", }, ), ( PromptTuningConfig, { "num_virtual_tokens": 10, "task_type": "SEQ_2_SEQ_LM", }, ), ( RoadConfig, { "task_type": "SEQ_2_SEQ_LM", "variant": "road_1", "group_size": 2, }, ), ( ShiraConfig, { "r": 1, "task_type": "SEQ_2_SEQ_LM", "target_modules": None, "init_weights": False, }, ), ( VBLoRAConfig, { "target_modules": None, "vblora_dropout": 0.05, "vector_length": 1, "num_vectors": 2, "task_type": "SEQ_2_SEQ_LM", }, ), ( VeraConfig, { "r": 8, "target_modules": None, "vera_dropout": 0.05, "projection_prng_key": 0xFF, "d_initial": 0.1, "save_projection": True, "bias": "none", "task_type": "SEQ_2_SEQ_LM", }, ), ( C3AConfig, { "task_type": "SEQ_2_SEQ_LM", "block_size": 1, "target_modules": None, }, ), ( WaveFTConfig, { "task_type": "SEQ_2_SEQ_LM", "n_frequency": 8, "target_modules": None, }, ), ] class TestEncoderDecoderModels(PeftCommonTester): transformers_class = AutoModelForSeq2SeqLM def skipTest(self, reason=""): # for backwards compatibility with unittest style test classes pytest.skip(reason) def prepare_inputs_for_testing(self): input_ids = torch.tensor([[1, 1, 1], [1, 2, 1]]).to(self.torch_device) decoder_input_ids = torch.tensor([[1, 1, 1], [1, 2, 1]]).to(self.torch_device) attention_mask = torch.tensor([[1, 1, 1], [1, 0, 1]]).to(self.torch_device) input_dict = { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, } return input_dict @pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST) @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) def test_attributes_parametrized(self, model_id, config_cls, config_kwargs): self._test_model_attr(model_id, config_cls, config_kwargs) @pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST) @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) def test_adapter_name(self, model_id, config_cls, config_kwargs): self._test_adapter_name(model_id, config_cls, config_kwargs) @pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST) @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) def test_prepare_for_training_parametrized(self, model_id, config_cls, config_kwargs): self._test_prepare_for_training(model_id, config_cls, config_kwargs) @pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST) @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) def test_save_pretrained(self, model_id, config_cls, config_kwargs): self._test_save_pretrained(model_id, config_cls, config_kwargs) @pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST) @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) def test_save_pretrained_pickle(self, model_id, config_cls, config_kwargs): self._test_save_pretrained(model_id, config_cls, config_kwargs, safe_serialization=False) @pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST) @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) def test_save_pretrained_selected_adapters(self, model_id, config_cls, config_kwargs): self._test_save_pretrained_selected_adapters(model_id, config_cls, config_kwargs) @pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST) @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) def test_save_pretrained_selected_adapters_pickle(self, model_id, config_cls, config_kwargs): self._test_save_pretrained_selected_adapters(model_id, config_cls, config_kwargs, safe_serialization=False) def test_load_model_low_cpu_mem_usage(self): # Using the first model with LoraConfig and an empty config_kwargs. self._test_load_model_low_cpu_mem_usage(PEFT_ENCODER_DECODER_MODELS_TO_TEST[0], LoraConfig, {}) @pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST) @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) def test_from_pretrained_config_construction(self, model_id, config_cls, config_kwargs): self._test_from_pretrained_config_construction(model_id, config_cls, config_kwargs) @pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST) @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) def test_merge_layers(self, model_id, config_cls, config_kwargs): config_kwargs = set_init_weights_false(config_cls, config_kwargs) self._test_merge_layers(model_id, config_cls, config_kwargs) @pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST) @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) def test_mixed_adapter_batches(self, model_id, config_cls, config_kwargs): config_kwargs = set_init_weights_false(config_cls, config_kwargs) self._test_mixed_adapter_batches(model_id, config_cls, config_kwargs) @pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST) @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) def test_generate_with_mixed_adapter_batches(self, model_id, config_cls, config_kwargs): config_kwargs = set_init_weights_false(config_cls, config_kwargs) self._test_generate_with_mixed_adapter_batches_and_beam_search(model_id, config_cls, config_kwargs) @pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST) @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) def test_generate(self, model_id, config_cls, config_kwargs): self._test_generate(model_id, config_cls, config_kwargs) @pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST) @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) def test_generate_pos_args(self, model_id, config_cls, config_kwargs): self._test_generate_pos_args(model_id, config_cls, config_kwargs, raises_err=True) @pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST) @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) def test_generate_half_prec(self, model_id, config_cls, config_kwargs): self._test_generate_half_prec(model_id, config_cls, config_kwargs) @pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST) @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) def test_prefix_tuning_half_prec_conversion(self, model_id, config_cls, config_kwargs): self._test_prefix_tuning_half_prec_conversion(model_id, config_cls, config_kwargs) @pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST) @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) def test_training_encoder_decoders(self, model_id, config_cls, config_kwargs): self._test_training(model_id, config_cls, config_kwargs) @pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST) @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) def test_training_encoder_decoders_layer_indexing(self, model_id, config_cls, config_kwargs): self._test_training_layer_indexing(model_id, config_cls, config_kwargs) @pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST) @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) def test_training_encoder_decoders_gradient_checkpointing(self, model_id, config_cls, config_kwargs): self._test_training_gradient_checkpointing(model_id, config_cls, config_kwargs) @pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST) @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) def test_inference_safetensors(self, model_id, config_cls, config_kwargs): self._test_inference_safetensors(model_id, config_cls, config_kwargs) @pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST) @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) def test_peft_model_device_map(self, model_id, config_cls, config_kwargs): self._test_peft_model_device_map(model_id, config_cls, config_kwargs) @pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST) @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) def test_delete_adapter(self, model_id, config_cls, config_kwargs): self._test_delete_adapter(model_id, config_cls, config_kwargs) @pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST) @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) def test_delete_inactive_adapter(self, model_id, config_cls, config_kwargs): self._test_delete_inactive_adapter(model_id, config_cls, config_kwargs) @pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST) @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) def test_adding_multiple_adapters_with_bias_raises(self, model_id, config_cls, config_kwargs): self._test_adding_multiple_adapters_with_bias_raises(model_id, config_cls, config_kwargs) @pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST) @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) def test_unload_adapter(self, model_id, config_cls, config_kwargs): config_kwargs = set_init_weights_false(config_cls, config_kwargs) self._test_unload_adapter(model_id, config_cls, config_kwargs) @pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST) @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) def test_weighted_combination_of_adapters(self, model_id, config_cls, config_kwargs): config_kwargs = set_init_weights_false(config_cls, config_kwargs) self._test_weighted_combination_of_adapters(model_id, config_cls, config_kwargs) @pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST) @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) def test_training_prompt_learning_tasks(self, model_id, config_cls, config_kwargs): self._test_training_prompt_learning_tasks(model_id, config_cls, config_kwargs) @pytest.mark.parametrize("model_id", PEFT_ENCODER_DECODER_MODELS_TO_TEST) @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) def test_disable_adapter(self, model_id, config_cls, config_kwargs): config_kwargs = set_init_weights_false(config_cls, config_kwargs) self._test_disable_adapter(model_id, config_cls, config_kwargs) def test_active_adapters_prompt_learning(self): model = AutoModelForSeq2SeqLM.from_pretrained( "hf-internal-testing/tiny-random-BartForConditionalGeneration" ).to(self.torch_device) # any prompt learning method would work here config = PromptEncoderConfig(task_type=TaskType.SEQ_2_SEQ_LM, num_virtual_tokens=10) model = get_peft_model(model, config) assert model.active_adapters == ["default"] def test_save_shared_tensors(self): model_id = "hf-internal-testing/tiny-random-RobertaModel" peft_config = LoraConfig( task_type=TaskType.TOKEN_CLS, inference_mode=False, r=16, lora_alpha=16, lora_dropout=0.1, bias="all", ) model = AutoModelForTokenClassification.from_pretrained(model_id, num_labels=11) model = get_peft_model(model, peft_config) with tempfile.TemporaryDirectory() as tmp_dir: # This should work fine model.save_pretrained(tmp_dir, safe_serialization=True)