# Copyright 2025-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest import torch from torch import nn from transformers import AutoModelForCausalLM from peft import LoraConfig, TaskType, get_peft_model from .testing_common import PeftCommonTester from .testing_utils import hub_online_once, set_init_weights_false ALL_CONFIGS = [ ########## # Llama4 # ########## # target down_proj ( "trl-internal-testing/tiny-Llama4ForCausalLM", LoraConfig, { "task_type": TaskType.CAUSAL_LM, "target_modules": [], "lora_dropout": 0.0, "target_parameters": [ "feed_forward.experts.down_proj", ], }, ), # target gate_up_proj and down_proj, but not on the same module ( "trl-internal-testing/tiny-Llama4ForCausalLM", LoraConfig, { "task_type": TaskType.CAUSAL_LM, "target_modules": [], "lora_dropout": 0.0, "target_parameters": [ "0.feed_forward.experts.gate_up_proj", "1.feed_forward.experts.down_proj", ], }, ), # target down_proj and gate_up_proj on the same module ( "trl-internal-testing/tiny-Llama4ForCausalLM", LoraConfig, { "task_type": "CAUSAL_LM", "r": 8, "lora_alpha": 32, "target_modules": None, "lora_dropout": 0.0, "bias": "none", "target_parameters": [ "feed_forward.experts.down_proj", "feed_forward.experts.gate_up_proj", ], }, ), # target q_proj, v_proj as modules, and down_proj as parameter ( "trl-internal-testing/tiny-Llama4ForCausalLM", LoraConfig, { "task_type": TaskType.CAUSAL_LM, "target_modules": ["q_proj", "v_proj"], "lora_dropout": 0.0, "target_parameters": [ "feed_forward.experts.down_proj", ], }, ), ########### # gpt-oss # ########### # target down_proj ( "trl-internal-testing/tiny-GptOssForCausalLM", LoraConfig, { "task_type": TaskType.CAUSAL_LM, "target_modules": [], "lora_dropout": 0.0, "target_parameters": [ "mlp.experts.down_proj", ], }, ), # target gate_up_proj and down_proj, but not on the same module ( "trl-internal-testing/tiny-GptOssForCausalLM", LoraConfig, { "task_type": TaskType.CAUSAL_LM, "target_modules": [], "lora_dropout": 0.0, "target_parameters": [ "0.mlp.experts.gate_up_proj", "1.mlp.experts.down_proj", ], }, ), # target down_proj and gate_up_proj on the same module ( "trl-internal-testing/tiny-GptOssForCausalLM", LoraConfig, { "task_type": "CAUSAL_LM", "r": 8, "lora_alpha": 32, "target_modules": None, "lora_dropout": 0.0, "bias": "none", "target_parameters": [ "mlp.experts.down_proj", "mlp.experts.gate_up_proj", ], }, ), # target q_proj, v_proj as modules, and down_proj as parameter ( "trl-internal-testing/tiny-GptOssForCausalLM", LoraConfig, { "task_type": TaskType.CAUSAL_LM, "target_modules": ["q_proj", "v_proj"], "lora_dropout": 0.0, "target_parameters": [ "mlp.experts.down_proj", ], }, ), ] class MyAutoModelForCausalLM(AutoModelForCausalLM): @classmethod def from_pretrained(cls, *args, **kwargs): torch.manual_seed(0) model = AutoModelForCausalLM.from_pretrained(*args, **kwargs) # check that we load the original model, not, say, a trained checkpoint if args[0] == "trl-internal-testing/tiny-Llama4ForCausalLM": # model contains weights with values ~1e36 or nan, so we need to reinitialize with sane values with torch.no_grad(): for param in model.parameters(): param.data = torch.randn(param.shape) return model class TestDecoderModelsTargetParameters(PeftCommonTester): # This is more or less a copy of TestDecoderModels at the time of the PR being added. Unnecessary code is removed, # like code required for testing non-LoRA methods. The tests being included are not selected to test specific # functionality of targeting nn.Parameters, they (together with the tests in test_custom_models.py) just ensure that # generally, nothing is broken. transformers_class = MyAutoModelForCausalLM def skipTest(self, reason=""): # for backwards compatibility with unittest style test classes pytest.skip(reason) def prepare_inputs_for_testing(self): input_ids = torch.tensor([[1, 1, 1], [1, 2, 1]]).to(self.torch_device) attention_mask = torch.tensor([[1, 1, 1], [1, 0, 1]]).to(self.torch_device) return {"input_ids": input_ids, "attention_mask": attention_mask} @pytest.mark.parametrize("model_id,config_cls,config_kwargs", ALL_CONFIGS) def test_attributes_parametrized(self, model_id, config_cls, config_kwargs): self._test_model_attr(model_id, config_cls, config_kwargs.copy()) @pytest.mark.parametrize("model_id,config_cls,config_kwargs", ALL_CONFIGS) def test_adapter_name(self, model_id, config_cls, config_kwargs): self._test_adapter_name(model_id, config_cls, config_kwargs.copy()) @pytest.mark.parametrize("model_id,config_cls,config_kwargs", ALL_CONFIGS) def test_prepare_for_training_parametrized(self, model_id, config_cls, config_kwargs): self._test_prepare_for_training(model_id, config_cls, config_kwargs.copy()) @pytest.mark.parametrize("model_id,config_cls,config_kwargs", ALL_CONFIGS) def test_save_pretrained(self, model_id, config_cls, config_kwargs): self._test_save_pretrained(model_id, config_cls, config_kwargs.copy()) @pytest.mark.parametrize("model_id,config_cls,config_kwargs", ALL_CONFIGS) def test_save_pretrained_pickle(self, model_id, config_cls, config_kwargs): self._test_save_pretrained(model_id, config_cls, config_kwargs.copy(), safe_serialization=False) @pytest.mark.skip(reason="Multiple adapters with target_parameters are not supported yet.") @pytest.mark.parametrize("model_id,config_cls,config_kwargs", ALL_CONFIGS) def test_save_pretrained_selected_adapters(self, model_id, config_cls, config_kwargs): self._test_save_pretrained_selected_adapters(model_id, config_cls, config_kwargs.copy()) @pytest.mark.skip(reason="Multiple adapters with target_parameters are not supported yet.") @pytest.mark.parametrize("model_id,config_cls,config_kwargs", ALL_CONFIGS) def test_save_pretrained_selected_adapters_pickle(self, model_id, config_cls, config_kwargs): self._test_save_pretrained_selected_adapters( model_id, config_cls, config_kwargs.copy(), safe_serialization=False ) @pytest.mark.parametrize("model_id,config_cls,config_kwargs", ALL_CONFIGS) def test_from_pretrained_config_construction(self, model_id, config_cls, config_kwargs): self._test_from_pretrained_config_construction(model_id, config_cls, config_kwargs.copy()) @pytest.mark.parametrize("model_id,config_cls,config_kwargs", ALL_CONFIGS) def test_merge_layers(self, model_id, config_cls, config_kwargs): config_kwargs = set_init_weights_false(config_cls, config_kwargs) self._test_merge_layers(model_id, config_cls, config_kwargs.copy()) @pytest.mark.skip(reason="Multiple adapters with target_parameters are not supported yet.") @pytest.mark.parametrize("model_id,config_cls,config_kwargs", ALL_CONFIGS) def test_merge_layers_multi(self, model_id, config_cls, config_kwargs): config_kwargs = set_init_weights_false(config_cls, config_kwargs) self._test_merge_layers_multi(model_id, config_cls, config_kwargs.copy()) @pytest.mark.parametrize("model_id,config_cls,config_kwargs", ALL_CONFIGS) def test_merge_layers_nan(self, model_id, config_cls, config_kwargs): config_kwargs = set_init_weights_false(config_cls, config_kwargs) self._test_merge_layers_nan(model_id, config_cls, config_kwargs.copy()) @pytest.mark.skip(reason="Multiple adapters with target_parameters are not supported yet.") @pytest.mark.parametrize("model_id,config_cls,config_kwargs", ALL_CONFIGS) def test_mixed_adapter_batches(self, model_id, config_cls, config_kwargs): config_kwargs = set_init_weights_false(config_cls, config_kwargs) msg = "lora.ParamWrapper does not support mixed adapter batches yet." with pytest.raises(ValueError, match=msg): self._test_mixed_adapter_batches(model_id, config_cls, config_kwargs.copy()) @pytest.mark.skip(reason="Multiple adapters with target_parameters are not supported yet.") @pytest.mark.parametrize("model_id,config_cls,config_kwargs", ALL_CONFIGS) def test_generate_with_mixed_adapter_batches(self, model_id, config_cls, config_kwargs): config_kwargs = set_init_weights_false(config_cls, config_kwargs) msg = "lora.ParamWrapper does not support mixed adapter batches yet." with pytest.raises(ValueError, match=msg): self._test_generate_with_mixed_adapter_batches_and_beam_search(model_id, config_cls, config_kwargs.copy()) @pytest.mark.parametrize("model_id,config_cls,config_kwargs", ALL_CONFIGS) def test_generate(self, model_id, config_cls, config_kwargs): self._test_generate(model_id, config_cls, config_kwargs.copy()) @pytest.mark.parametrize("model_id,config_cls,config_kwargs", ALL_CONFIGS) def test_generate_pos_args(self, model_id, config_cls, config_kwargs): self._test_generate_pos_args(model_id, config_cls, config_kwargs.copy(), raises_err=False) @pytest.mark.parametrize("model_id,config_cls,config_kwargs", ALL_CONFIGS) def test_merge_layers_fp16(self, model_id, config_cls, config_kwargs): self._test_merge_layers_fp16(model_id, config_cls, config_kwargs.copy()) @pytest.mark.parametrize("model_id,config_cls,config_kwargs", ALL_CONFIGS) def test_generate_half_prec(self, model_id, config_cls, config_kwargs): self._test_generate_half_prec(model_id, config_cls, config_kwargs.copy()) @pytest.mark.parametrize("model_id,config_cls,config_kwargs", ALL_CONFIGS) def test_training_decoders(self, model_id, config_cls, config_kwargs): self._test_training(model_id, config_cls, config_kwargs.copy()) @pytest.mark.parametrize("model_id,config_cls,config_kwargs", ALL_CONFIGS) def test_training_decoders_gradient_checkpointing(self, model_id, config_cls, config_kwargs): self._test_training_gradient_checkpointing(model_id, config_cls, config_kwargs.copy()) @pytest.mark.parametrize("model_id,config_cls,config_kwargs", ALL_CONFIGS) def test_inference_safetensors(self, model_id, config_cls, config_kwargs): self._test_inference_safetensors(model_id, config_cls, config_kwargs.copy()) @pytest.mark.parametrize("model_id,config_cls,config_kwargs", ALL_CONFIGS) def test_peft_model_device_map(self, model_id, config_cls, config_kwargs): self._test_peft_model_device_map(model_id, config_cls, config_kwargs.copy()) @pytest.mark.skip(reason="Multiple adapters with target_parameters are not supported yet.") @pytest.mark.parametrize("model_id,config_cls,config_kwargs", ALL_CONFIGS) def test_delete_adapter(self, model_id, config_cls, config_kwargs): self._test_delete_adapter(model_id, config_cls, config_kwargs.copy()) @pytest.mark.skip(reason="Multiple adapters with target_parameters are not supported yet.") @pytest.mark.parametrize("model_id,config_cls,config_kwargs", ALL_CONFIGS) def test_delete_inactive_adapter(self, model_id, config_cls, config_kwargs): self._test_delete_inactive_adapter(model_id, config_cls, config_kwargs.copy()) @pytest.mark.parametrize("model_id,config_cls,config_kwargs", ALL_CONFIGS) def test_adding_multiple_adapters_with_bias_raises(self, model_id, config_cls, config_kwargs): self._test_adding_multiple_adapters_with_bias_raises(model_id, config_cls, config_kwargs.copy()) @pytest.mark.parametrize("model_id,config_cls,config_kwargs", ALL_CONFIGS) def test_unload_adapter(self, model_id, config_cls, config_kwargs): config_kwargs = set_init_weights_false(config_cls, config_kwargs) self._test_unload_adapter(model_id, config_cls, config_kwargs.copy()) @pytest.mark.skip(reason="Multiple adapters with target_parameters are not supported yet.") @pytest.mark.parametrize("model_id,config_cls,config_kwargs", ALL_CONFIGS) def test_weighted_combination_of_adapters(self, model_id, config_cls, config_kwargs): config_kwargs = set_init_weights_false(config_cls, config_kwargs) msg = "add_weighted_adapter does not support targeting nn.Parameter" with pytest.raises(ValueError, match=msg): self._test_weighted_combination_of_adapters(model_id, config_cls, config_kwargs.copy()) @pytest.mark.parametrize("model_id,config_cls,config_kwargs", ALL_CONFIGS) def test_training_prompt_learning_tasks(self, model_id, config_cls, config_kwargs): self._test_training_prompt_learning_tasks(model_id, config_cls, config_kwargs.copy()) @pytest.mark.parametrize("model_id,config_cls,config_kwargs", ALL_CONFIGS) def test_disable_adapter(self, model_id, config_cls, config_kwargs): config_kwargs = set_init_weights_false(config_cls, config_kwargs) self._test_disable_adapter(model_id, config_cls, config_kwargs.copy()) @pytest.mark.parametrize("model_id,config_cls,config_kwargs", ALL_CONFIGS) def test_passing_input_embeds_works(self, model_id, config_cls, config_kwargs): self._test_passing_input_embeds_works("", model_id, config_cls, config_kwargs.copy()) class TestTargetParameters: # Tests specifically designed for target_parameters def test_targeting_module_and_targeting_param_equivalent(self): # Test that using LoRA with target_modules vs target_parameters yields identical results. # note: we purposely target the gate_proj because its weight is not square (unlike q_proj, ...), this makes it # easier to catch shape errors torch.manual_seed(0) model_id = "hf-internal-testing/tiny-random-LlamaForCausalLM" with hub_online_once(model_id): model0 = AutoModelForCausalLM.from_pretrained(model_id) x = torch.arange(10).view(2, 5) with torch.inference_mode(): out_base = model0(x, output_hidden_states=True).hidden_states[-1] # targeting the module config0 = LoraConfig(target_modules=["gate_proj"], init_lora_weights=False) model0 = get_peft_model(model0, config0) # targeting the parameter model1 = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-LlamaForCausalLM") config1 = LoraConfig(target_modules=[], target_parameters=["gate_proj.weight"], init_lora_weights=False) model1 = get_peft_model(model1, config1) gate_proj_0_0 = model0.base_model.model.model.layers[0].mlp.gate_proj gate_proj_0_1 = model0.base_model.model.model.layers[1].mlp.gate_proj gate_proj_1_0 = model1.base_model.model.model.layers[0].mlp.gate_proj gate_proj_1_1 = model1.base_model.model.model.layers[1].mlp.gate_proj # ensure that the randomly initialized LoRA weights are identical gate_proj_1_0.lora_A.default.weight.data.copy_(gate_proj_0_0.lora_A.default.weight.data) gate_proj_1_1.lora_A.default.weight.data.copy_(gate_proj_0_1.lora_A.default.weight.data) gate_proj_1_0.lora_B.default.weight.data.copy_(gate_proj_0_0.lora_B.default.weight.data) gate_proj_1_1.lora_B.default.weight.data.copy_(gate_proj_0_1.lora_B.default.weight.data) with torch.inference_mode(): out_lora_0 = model0(x, output_hidden_states=True).hidden_states[-1] out_lora_1 = model1(x, output_hidden_states=True).hidden_states[-1] # sanity check: basemodel outputs should be different atol, rtol = 1e-6, 1e-6 assert not torch.allclose(out_base, out_lora_0, atol=atol, rtol=rtol) # LoRA outputs should be the same assert torch.allclose(out_lora_0, out_lora_1, atol=atol, rtol=rtol) def test_target_multiple_parameters_on_same_module(self, monkeypatch): # test that if we target multiple nn.Parameters on the same module, all of them are being used during the # forward pass torch.manual_seed(0) model_id = "trl-internal-testing/tiny-Llama4ForCausalLM" with hub_online_once(model_id): x = torch.arange(10).view(2, 5) model = MyAutoModelForCausalLM.from_pretrained(model_id) shape_gate_up_proj = model.model.layers[0].feed_forward.experts.gate_up_proj.shape shape_down_proj = model.model.layers[0].feed_forward.experts.down_proj.shape num_layers = len(model.model.layers) target_parameters = ["feed_forward.experts.gate_up_proj", "feed_forward.experts.down_proj"] num_params = len(target_parameters) config = LoraConfig(target_parameters=target_parameters, init_lora_weights=False) model = get_peft_model(model, config) # CHECK FORWARD CALLS # log the weights seen during the forward call weights = [] def mock_forward(self, W): weights.append(W) return orig_forward(self, W) from peft.tuners.lora.layer import _LoraParameterProxy orig_forward = _LoraParameterProxy.forward monkeypatch.setattr(_LoraParameterProxy, "forward", mock_forward) num_steps = 3 with torch.inference_mode(): for _ in range(num_steps): out_base = model(x, output_hidden_states=True).hidden_states[-1] actual_call_count = len(weights) # Note: We call forward twice per step, once to create the parametrization and once for the actual forward # step. This may be a bit wasteful but it's not clear how to prevent this and overall is probably negligible num_forward_per_step = 2 # Since https://github.com/huggingface/transformers/pull/39501, one of the parameters is accessed twice per # forward call, so add +1. expected_call_count = num_steps * num_layers * (1 + num_params * num_forward_per_step) assert actual_call_count == expected_call_count actual_shapes = {W.shape for W in weights} expected_shapes = {shape_gate_up_proj, shape_down_proj} assert actual_shapes == expected_shapes # CHECK WEIGHT UPDATES lora_weights_before = { k: v.clone() for k, v in model.named_parameters() if "lora_A.default" in k or "lora_B.default" in k } # sanity check: assert len(lora_weights_before) == 2 * num_layers * num_params # train optim = torch.optim.SGD(model.parameters(), lr=0.01) for _ in range(10): optim.zero_grad() out = model(x) loss = out.logits.sum() loss.backward() optim.step() lora_weights_after = { k: v for k, v in model.named_parameters() if "lora_A.default" in k or "lora_B.default" in k } assert lora_weights_before.keys() == lora_weights_after.keys() atol, rtol = 0.1, 0.1 for key in lora_weights_before.keys(): assert not torch.allclose(lora_weights_before[key], lora_weights_after[key], atol=atol, rtol=rtol) def test_target_parameters_works_with_existing_parametrization(self): # When a parameter is already parametrized, we want the LoRA parametrization to work with it correctly. class MyLinear(nn.Linear): # For testing purposes, define a linear layer with 2 parameters: weight and other_weight. def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) nn.init.ones_(self.weight) self.other_weight = nn.Parameter(torch.ones(self.weight.shape)) class MyModule(nn.Module): def __init__(self): super().__init__() self.lin = MyLinear(2, 2, bias=False) def forward(self, x): return self.lin(x) class MyParametrization(nn.Module): def __init__(self): super().__init__() def forward(self, x): return x + 1 # base model model = MyModule() x = torch.ones((2, 2)) # sanity check: result should be 1*1 + 1*1 == 2 output_base = model(x) assert torch.all(output_base == 2) # add parametrization to the weight nn.utils.parametrize.register_parametrization(model.lin, "weight", MyParametrization()) # result should be (1+1)*1 + (1+1)*1 == 4 output_parametrized = model(x) assert torch.all(output_parametrized == 4) # add LoRA parametrization to the weight config = LoraConfig(r=2, lora_alpha=6, target_parameters=["lin.weight"], init_lora_weights=False) model = get_peft_model(model, config) # manually set LoRA weights to ones nn.init.ones_(model.base_model.model.lin.lora_A["default"].weight) nn.init.ones_(model.base_model.model.lin.lora_B["default"].weight) output_lora = model(x) # delta_weight should be: (1+1) * lora_scale = (1+1) * (alpha / rank) = 2 * (6 / 2) = 6 # result should be: (1+1+6)*1 + (1+1+6)*1 == 8 + 8 == 16 assert torch.all(output_lora == 16) # calling twice should yield the same result output_lora2 = model(x) assert torch.allclose(output_lora, output_lora2) # add another LoRA parametrization to other_weight, should have no effect on the output config = LoraConfig(r=2, lora_alpha=6, target_parameters=["lin.other_weight"], init_lora_weights=False) model.add_adapter("other", config) output_other_lora = model(x) # delta_weight should be: (1+1) * lora_scale = (1+1) * (alpha / rank) = 2 * (6 / 2) = 6 # result should be: (1+1+6)*1 + (1+1+6)*1 == 8 + 8 == 16 assert torch.all(output_other_lora == output_lora) # after unloading, the output should be the same as before LoRA was applied unloaded = model.unload() output_unloaded = unloaded(x) assert torch.all(output_unloaded == output_parametrized)