Spaces:
Runtime error
Runtime error
added gpu support
Browse files
app.py
CHANGED
|
@@ -1,6 +1,11 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import pipeline, AutoModelForSeq2SeqLM, AutoTokenizer
|
| 3 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
# Define model paths
|
| 6 |
MODEL_PATHS = {
|
|
@@ -14,7 +19,8 @@ MODEL_PATHS = {
|
|
| 14 |
TOKEN = os.environ['TOKEN']
|
| 15 |
|
| 16 |
# Translation function for Nano and Large models
|
| 17 |
-
|
|
|
|
| 18 |
translator = pipeline("translation", model=model_path, token=TOKEN)
|
| 19 |
translated = translator(
|
| 20 |
text,
|
|
@@ -25,21 +31,24 @@ def translate_nano_large(text, model_path):
|
|
| 25 |
do_sample=False,
|
| 26 |
pad_token_id=translator.tokenizer.pad_token_id,
|
| 27 |
bos_token_id=translator.tokenizer.bos_token_id,
|
| 28 |
-
eos_token_id=translator.tokenizer.eos_token_id
|
|
|
|
| 29 |
)
|
| 30 |
return translated[0]["translation_text"]
|
| 31 |
|
| 32 |
# Translation function for Ultra and Supreme models
|
| 33 |
-
|
|
|
|
| 34 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_path, token=TOKEN)
|
| 35 |
-
tokenizer = AutoTokenizer.from_pretrained(model_path, token=TOKEN)
|
| 36 |
translator = pipeline(
|
| 37 |
"translation",
|
| 38 |
model=model,
|
| 39 |
tokenizer=tokenizer,
|
| 40 |
max_length=512,
|
| 41 |
src_lang="eng_Latn", # Keep src_lang and tgt_lang in the pipeline
|
| 42 |
-
tgt_lang="ary_Arab"
|
|
|
|
| 43 |
)
|
| 44 |
translation = translator(text)[0]['translation_text']
|
| 45 |
return translation
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import pipeline, AutoModelForSeq2SeqLM, AutoTokenizer
|
| 3 |
import os
|
| 4 |
+
import torch
|
| 5 |
+
import spaces
|
| 6 |
+
|
| 7 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 8 |
+
print(f'[INFO] Using device: {device}')
|
| 9 |
|
| 10 |
# Define model paths
|
| 11 |
MODEL_PATHS = {
|
|
|
|
| 19 |
TOKEN = os.environ['TOKEN']
|
| 20 |
|
| 21 |
# Translation function for Nano and Large models
|
| 22 |
+
@spaces.GPU
|
| 23 |
+
def translate_nano_large(text, model_path, device='cuda:0'):
|
| 24 |
translator = pipeline("translation", model=model_path, token=TOKEN)
|
| 25 |
translated = translator(
|
| 26 |
text,
|
|
|
|
| 31 |
do_sample=False,
|
| 32 |
pad_token_id=translator.tokenizer.pad_token_id,
|
| 33 |
bos_token_id=translator.tokenizer.bos_token_id,
|
| 34 |
+
eos_token_id=translator.tokenizer.eos_token_id,
|
| 35 |
+
device=device,
|
| 36 |
)
|
| 37 |
return translated[0]["translation_text"]
|
| 38 |
|
| 39 |
# Translation function for Ultra and Supreme models
|
| 40 |
+
@spaces.GPU
|
| 41 |
+
def translate_ultra_supreme(text, model_path, device='cuda:0'):
|
| 42 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_path, token=TOKEN)
|
| 43 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, src_lang="eng_Latn", tgt_lang="ary_Arab", token=TOKEN)
|
| 44 |
translator = pipeline(
|
| 45 |
"translation",
|
| 46 |
model=model,
|
| 47 |
tokenizer=tokenizer,
|
| 48 |
max_length=512,
|
| 49 |
src_lang="eng_Latn", # Keep src_lang and tgt_lang in the pipeline
|
| 50 |
+
tgt_lang="ary_Arab",
|
| 51 |
+
device=device,
|
| 52 |
)
|
| 53 |
translation = translator(text)[0]['translation_text']
|
| 54 |
return translation
|