Spaces:
Runtime error
Runtime error
| import spaces | |
| import gradio as gr | |
| import torch | |
| from unsloth import FastLanguageModel | |
| # Configuration Variables | |
| model_name = "unsloth/Llama-3.2-3B-Instruct-bnb-4bit" # Replace with your actual model name | |
| lora_adapter = "Braszczynski/Llama-3.2-3B-Instruct-bnb-4bit-merged-v2-460steps" | |
| max_seq_length = 512 # Adjust as needed | |
| dtype = None # Example dtype, adjust based on your setup | |
| load_in_4bit = True # Set to True if you want to use 4-bit quantization | |
| model, tokenizer = FastLanguageModel.from_pretrained( | |
| model_name = lora_adapter, | |
| max_seq_length = max_seq_length, | |
| dtype = dtype, | |
| load_in_4bit = load_in_4bit, | |
| ) | |
| FastLanguageModel.for_inference(model) # Enable native 2x faster inference | |
| device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
| model = model.to(device) | |
| def respond(message, history, system_message, max_tokens, temperature, top_p): | |
| # Combine system message and chat history | |
| chat_history = f"{system_message}\n" | |
| for user_msg, bot_reply in history: | |
| chat_history += f"User: {user_msg}\nAssistant: {bot_reply}\n" | |
| chat_history += f"User: {message}\nAssistant:" | |
| # Prepare the input for the model | |
| inputs = tokenizer( | |
| chat_history, | |
| return_tensors="pt", | |
| truncation=True, | |
| max_length=max_seq_length, | |
| ).to(device) | |
| # Generate the response | |
| with torch.no_grad(): | |
| outputs = model.generate( | |
| input_ids=inputs["input_ids"], | |
| max_new_tokens=max_tokens, | |
| temperature=temperature, | |
| top_p=top_p, | |
| pad_token_id=tokenizer.eos_token_id, | |
| use_cache=True | |
| ) | |
| # Decode and format the response | |
| response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| response = response[len(chat_history):].strip() # Remove the input context | |
| return response | |
| # Load the tokenizer | |
| tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True) | |
| # Define the Gradio interface | |
| demo = gr.ChatInterface( | |
| respond, | |
| additional_inputs=[ | |
| gr.Textbox(value="You are a friendly assistant.", label="System message"), | |
| gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
| gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
| gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), | |
| ], | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |