Thewhey-Brian
Deploy nanochat
bd710e9
raw
history blame
16.1 kB
#!/usr/bin/env python3
"""
Unified web chat server - serves both UI and API from a single FastAPI instance.
Uses data parallelism to distribute requests across multiple GPUs. Each GPU loads
a full copy of the model, and incoming requests are distributed to available workers.
Automatically falls back to CPU if CUDA is not available.
Launch examples:
- single available GPU (default)
python -m scripts.chat_web
- 4 GPUs
python -m scripts.chat_web --num-gpus 4
- CPU only (automatic if no CUDA)
python -m scripts.chat_web
To chat, open the URL printed in the console. (If on cloud box, make sure to use public IP)
Endpoints:
GET / - Chat UI
POST /chat/completions - Chat API (streaming only)
GET /health - Health check with worker pool status
GET /stats - Worker pool statistics and GPU utilization
Abuse Prevention:
- Maximum 500 messages per request
- Maximum 8000 characters per message
- Maximum 32000 characters total conversation length
- Temperature clamped to 0.0-2.0
- Top-k clamped to 1-200
- Max tokens clamped to 1-4096
"""
import argparse
import json
import os
import torch
import asyncio
import logging
import random
from contextlib import asynccontextmanager
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import StreamingResponse, HTMLResponse, FileResponse
from pydantic import BaseModel
from typing import List, Optional, AsyncGenerator
from dataclasses import dataclass
from nanochat.common import compute_init
from nanochat.checkpoint_manager import load_model
from nanochat.engine import Engine
# Abuse prevention limits
MAX_MESSAGES_PER_REQUEST = 500
MAX_MESSAGE_LENGTH = 8000
MAX_TOTAL_CONVERSATION_LENGTH = 32000
MIN_TEMPERATURE = 0.0
MAX_TEMPERATURE = 2.0
MIN_TOP_K = 1
MAX_TOP_K = 200
MIN_MAX_TOKENS = 1
MAX_MAX_TOKENS = 4096
parser = argparse.ArgumentParser(description='NanoChat Web Server')
parser.add_argument('-n', '--num-gpus', type=int, default=1, help='Number of GPUs to use (ignored on CPU, default: 1)')
parser.add_argument('-i', '--source', type=str, default="sft", help="Source of the model: sft|mid|rl")
parser.add_argument('-t', '--temperature', type=float, default=0.8, help='Default temperature for generation')
parser.add_argument('-k', '--top-k', type=int, default=50, help='Default top-k sampling parameter')
parser.add_argument('-m', '--max-tokens', type=int, default=512, help='Default max tokens for generation')
parser.add_argument('-g', '--model-tag', type=str, default=None, help='Model tag to load')
parser.add_argument('-s', '--step', type=int, default=None, help='Step to load')
parser.add_argument('-p', '--port', type=int, default=8000, help='Port to run the server on')
parser.add_argument('--host', type=str, default='0.0.0.0', help='Host to bind the server to')
args = parser.parse_args()
# Configure logging for conversation traffic
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S'
)
logger = logging.getLogger(__name__)
ddp, ddp_rank, ddp_local_rank, ddp_world_size, device = compute_init()
@dataclass
class Worker:
"""A worker with a model loaded on a specific device (GPU or CPU)."""
worker_id: int
device: torch.device
engine: Engine
tokenizer: object
autocast_ctx: torch.amp.autocast
class WorkerPool:
"""Pool of workers, each with a model replica on a different device."""
def __init__(self, num_workers: Optional[int] = None):
# Auto-detect: use GPUs if available, otherwise use 1 CPU worker
if torch.cuda.is_available():
self.num_workers = num_workers if num_workers is not None else torch.cuda.device_count()
self.use_cuda = True
else:
self.num_workers = 1 # CPU mode - single worker
self.use_cuda = False
self.workers: List[Worker] = []
self.available_workers: asyncio.Queue = asyncio.Queue()
async def initialize(self, source: str, model_tag: Optional[str] = None, step: Optional[int] = None):
"""Load model on each device."""
device_type = "GPU" if self.use_cuda else "CPU"
print(f"Initializing worker pool with {self.num_workers} {device_type} worker(s)...")
for worker_id in range(self.num_workers):
if self.use_cuda:
device = torch.device(f"cuda:{worker_id}")
print(f"Loading model on GPU {worker_id}...")
autocast_ctx = torch.amp.autocast(device_type="cuda", dtype=torch.bfloat16)
else:
device = torch.device("cpu")
print(f"Loading model on CPU...")
# CPU autocast uses bfloat16 if available, otherwise float32
autocast_ctx = torch.amp.autocast(device_type="cpu", dtype=torch.bfloat16)
model, tokenizer, _ = load_model(source, device, phase="eval", model_tag=model_tag, step=step)
engine = Engine(model, tokenizer)
worker = Worker(
worker_id=worker_id,
device=device,
engine=engine,
tokenizer=tokenizer,
autocast_ctx=autocast_ctx
)
self.workers.append(worker)
await self.available_workers.put(worker)
print(f"All {self.num_workers} worker(s) initialized!")
async def acquire_worker(self) -> Worker:
"""Get an available worker from the pool."""
return await self.available_workers.get()
async def release_worker(self, worker: Worker):
"""Return a worker to the pool."""
await self.available_workers.put(worker)
class ChatMessage(BaseModel):
role: str
content: str
class ChatRequest(BaseModel):
messages: List[ChatMessage]
temperature: Optional[float] = None
max_tokens: Optional[int] = None
top_k: Optional[int] = None
def validate_chat_request(request: ChatRequest):
"""Validate chat request to prevent abuse."""
# Check number of messages
if len(request.messages) == 0:
raise HTTPException(status_code=400, detail="At least one message is required")
if len(request.messages) > MAX_MESSAGES_PER_REQUEST:
raise HTTPException(
status_code=400,
detail=f"Too many messages. Maximum {MAX_MESSAGES_PER_REQUEST} messages allowed per request"
)
# Check individual message lengths and total conversation length
total_length = 0
for i, message in enumerate(request.messages):
if not message.content:
raise HTTPException(status_code=400, detail=f"Message {i} has empty content")
msg_length = len(message.content)
if msg_length > MAX_MESSAGE_LENGTH:
raise HTTPException(
status_code=400,
detail=f"Message {i} is too long. Maximum {MAX_MESSAGE_LENGTH} characters allowed per message"
)
total_length += msg_length
if total_length > MAX_TOTAL_CONVERSATION_LENGTH:
raise HTTPException(
status_code=400,
detail=f"Total conversation is too long. Maximum {MAX_TOTAL_CONVERSATION_LENGTH} characters allowed"
)
# Validate role values
for i, message in enumerate(request.messages):
if message.role not in ["user", "assistant"]:
raise HTTPException(
status_code=400,
detail=f"Message {i} has invalid role. Must be 'user', 'assistant', or 'system'"
)
# Validate temperature
if request.temperature is not None:
if not (MIN_TEMPERATURE <= request.temperature <= MAX_TEMPERATURE):
raise HTTPException(
status_code=400,
detail=f"Temperature must be between {MIN_TEMPERATURE} and {MAX_TEMPERATURE}"
)
# Validate top_k
if request.top_k is not None:
if not (MIN_TOP_K <= request.top_k <= MAX_TOP_K):
raise HTTPException(
status_code=400,
detail=f"top_k must be between {MIN_TOP_K} and {MAX_TOP_K}"
)
# Validate max_tokens
if request.max_tokens is not None:
if not (MIN_MAX_TOKENS <= request.max_tokens <= MAX_MAX_TOKENS):
raise HTTPException(
status_code=400,
detail=f"max_tokens must be between {MIN_MAX_TOKENS} and {MAX_MAX_TOKENS}"
)
@asynccontextmanager
async def lifespan(app: FastAPI):
"""Load models on startup (GPU or CPU)."""
print("Loading nanochat models...")
app.state.worker_pool = WorkerPool(num_workers=args.num_gpus)
await app.state.worker_pool.initialize(args.source, model_tag=args.model_tag, step=args.step)
print(f"Server ready at http://localhost:{args.port}")
yield
app = FastAPI(lifespan=lifespan)
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.get("/")
async def root():
"""Serve the chat UI."""
ui_html_path = os.path.join("nanochat", "ui.html")
with open(ui_html_path, "r") as f:
html_content = f.read()
# Replace the API_URL to use the same origin
html_content = html_content.replace(
"const API_URL = `http://${window.location.hostname}:8000`;",
"const API_URL = '';"
)
return HTMLResponse(content=html_content)
@app.get("/logo.svg")
async def logo():
"""Serve the NanoChat logo for favicon and header."""
logo_path = os.path.join("nanochat", "logo.svg")
return FileResponse(logo_path, media_type="image/svg+xml")
async def generate_stream(
worker: Worker,
tokens,
temperature=None,
max_new_tokens=None,
top_k=None
) -> AsyncGenerator[str, None]:
"""Generate assistant response with streaming."""
temperature = temperature if temperature is not None else args.temperature
max_new_tokens = max_new_tokens if max_new_tokens is not None else args.max_tokens
top_k = top_k if top_k is not None else args.top_k
assistant_end = worker.tokenizer.encode_special("<|assistant_end|>")
bos = worker.tokenizer.get_bos_token_id()
# Accumulate tokens to properly handle multi-byte UTF-8 characters (like emojis)
accumulated_tokens = []
# Track the last complete UTF-8 string (without replacement characters)
last_clean_text = ""
with worker.autocast_ctx:
for token_column, token_masks in worker.engine.generate(
tokens,
num_samples=1,
max_tokens=max_new_tokens,
temperature=temperature,
top_k=top_k,
seed=random.randint(0, 2**31 - 1)
):
token = token_column[0]
# Stopping criteria
if token == assistant_end or token == bos:
break
# Append the token to sequence
accumulated_tokens.append(token)
# Decode all accumulated tokens to get proper UTF-8 handling
# Note that decode is a quite efficient operation, basically table lookup and string concat
current_text = worker.tokenizer.decode(accumulated_tokens)
# Only emit text if it doesn't end with a replacement character
# This ensures we don't emit incomplete UTF-8 sequences
if not current_text.endswith('�'):
# Extract only the new text since last clean decode
new_text = current_text[len(last_clean_text):]
if new_text: # Only yield if there's new content
yield f"data: {json.dumps({'token': new_text, 'worker': worker.worker_id}, ensure_ascii=False)}\n\n"
last_clean_text = current_text
yield f"data: {json.dumps({'done': True})}\n\n"
@app.post("/chat/completions")
async def chat_completions(request: ChatRequest):
"""Chat completion endpoint (streaming only) - uses worker pool for multi-GPU."""
# Basic validation to prevent abuse
validate_chat_request(request)
# Log incoming conversation to console
logger.info("="*20)
for i, message in enumerate(request.messages):
logger.info(f"[{message.role.upper()}]: {message.content}")
logger.info("-"*20)
# Acquire a worker from the pool (will wait if all are busy)
worker_pool = app.state.worker_pool
worker = await worker_pool.acquire_worker()
try:
# Build conversation tokens
bos = worker.tokenizer.get_bos_token_id()
user_start = worker.tokenizer.encode_special("<|user_start|>")
user_end = worker.tokenizer.encode_special("<|user_end|>")
assistant_start = worker.tokenizer.encode_special("<|assistant_start|>")
assistant_end = worker.tokenizer.encode_special("<|assistant_end|>")
conversation_tokens = [bos]
for message in request.messages:
if message.role == "user":
conversation_tokens.append(user_start)
conversation_tokens.extend(worker.tokenizer.encode(message.content))
conversation_tokens.append(user_end)
elif message.role == "assistant":
conversation_tokens.append(assistant_start)
conversation_tokens.extend(worker.tokenizer.encode(message.content))
conversation_tokens.append(assistant_end)
conversation_tokens.append(assistant_start)
# Streaming response with worker release after completion
response_tokens = []
async def stream_and_release():
try:
async for chunk in generate_stream(
worker,
conversation_tokens,
temperature=request.temperature,
max_new_tokens=request.max_tokens,
top_k=request.top_k
):
# Accumulate response for logging
chunk_data = json.loads(chunk.replace("data: ", "").strip())
if "token" in chunk_data:
response_tokens.append(chunk_data["token"])
yield chunk
finally:
# Log the assistant response to console
full_response = "".join(response_tokens)
device_name = f"GPU {worker.worker_id}" if str(worker.device).startswith("cuda") else "CPU"
logger.info(f"[ASSISTANT] ({device_name}): {full_response}")
logger.info("="*20)
# Release worker back to pool after streaming is done
await worker_pool.release_worker(worker)
return StreamingResponse(
stream_and_release(),
media_type="text/event-stream"
)
except Exception as e:
# Make sure to release worker even on error
await worker_pool.release_worker(worker)
raise e
@app.get("/health")
async def health():
"""Health check endpoint."""
worker_pool = getattr(app.state, 'worker_pool', None)
return {
"status": "ok",
"ready": worker_pool is not None and len(worker_pool.workers) > 0,
"num_workers": worker_pool.num_workers if worker_pool else 0,
"use_cuda": worker_pool.use_cuda if worker_pool else False,
"available_workers": worker_pool.available_workers.qsize() if worker_pool else 0
}
@app.get("/stats")
async def stats():
"""Get worker pool statistics."""
worker_pool = app.state.worker_pool
return {
"total_workers": len(worker_pool.workers),
"available_workers": worker_pool.available_workers.qsize(),
"busy_workers": len(worker_pool.workers) - worker_pool.available_workers.qsize(),
"use_cuda": worker_pool.use_cuda,
"workers": [
{
"worker_id": w.worker_id,
"device": str(w.device)
} for w in worker_pool.workers
]
}
if __name__ == "__main__":
import uvicorn
print(f"Starting NanoChat Web Server")
print(f"Temperature: {args.temperature}, Top-k: {args.top_k}, Max tokens: {args.max_tokens}")
uvicorn.run(app, host=args.host, port=args.port)