""" Midtrain the model. Same as pretraining but simpler. Run as: python -m scripts.mid_train Or torchrun for training: torchrun --standalone --nproc_per_node=8 -m scripts.mid_train -- --device_batch_size=16 """ from collections import deque import os os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True" import time import wandb import torch from nanochat.common import compute_init, compute_cleanup, print0, DummyWandb, get_base_dir from nanochat.tokenizer import get_token_bytes from nanochat.checkpoint_manager import save_checkpoint from nanochat.loss_eval import evaluate_bpb from nanochat.checkpoint_manager import load_model import torch.distributed as dist from tasks.common import TaskMixture from tasks.gsm8k import GSM8K from tasks.mmlu import MMLU from tasks.smoltalk import SmolTalk # ----------------------------------------------------------------------------- run = "dummy" # wandb run name default ("dummy" is special - we won't log to wandb) model_tag = None # model tag to load the model from (base model or midtrained model) step = None # step to load the model from (base model or midtrained model) dtype = "bfloat16" max_seq_len = 2048 device_batch_size = 32 unembedding_lr = 0.004 embedding_lr = 0.2 matrix_lr = 0.02 init_lr_frac = 1.0 # initial learning rate is this fraction of the base learning rate weight_decay = 0.0 eval_every = 150 eval_tokens = 20*524288 total_batch_size = 524288 dry_run = 0 # dry_run=1 is for experiments: we will log to wandb but we won't write checkpoints or report config_keys = [k for k,v in globals().items() if not k.startswith('_') and isinstance(v, (int, float, bool, str))] exec(open(os.path.join('nanochat', 'configurator.py')).read()) # overrides from command line or config file user_config = {k: globals()[k] for k in config_keys} # possibly useful for logging # ----------------------------------------------------------------------------- # Compute init ddp, ddp_rank, ddp_local_rank, ddp_world_size, device = compute_init() master_process = ddp_rank == 0 dtype = torch.float32 if dtype == 'float32' else torch.bfloat16 autocast_ctx = torch.amp.autocast(device_type="cuda", dtype=dtype) # wandb logging init use_dummy_wandb = run == "dummy" or not master_process wandb_run = DummyWandb() if use_dummy_wandb else wandb.init(project="nanochat-mid", name=run, config=user_config) # Load the model and tokenizer model, tokenizer, meta = load_model("base", device, phase="train", model_tag=model_tag, step=step) pretrain_batch_size = meta.get("device_batch_size", None) if pretrain_batch_size is not None and device_batch_size > pretrain_batch_size: print0(f"FOOTGUN WARNING: base model training used device_batch_size {pretrain_batch_size}, did you pass in a good --device_batch_size to this script?") orig_model = model model = torch.compile(model, dynamic=False) depth = model.config.n_layer num_flops_per_token = model.estimate_flops() tokens_per_fwdbwd = device_batch_size * max_seq_len # tokens per iteration for a single rank world_tokens_per_fwdbwd = tokens_per_fwdbwd * ddp_world_size # total tokens per iteration for all ranks assert total_batch_size % world_tokens_per_fwdbwd == 0 grad_accum_steps = total_batch_size // world_tokens_per_fwdbwd print0(f"Tokens / micro-batch / rank: {device_batch_size} x {max_seq_len} = {tokens_per_fwdbwd:,}") print0(f"Tokens / micro-batch: {world_tokens_per_fwdbwd:,}") print0(f"Total batch size {total_batch_size:,} => gradient accumulation steps: {grad_accum_steps}") token_bytes = get_token_bytes(device=device) # Initialize the Optimizer (Muon for Linear layers, AdamW for embedding and lm_head) optimizers = model.setup_optimizers(unembedding_lr=unembedding_lr, embedding_lr=embedding_lr, matrix_lr=matrix_lr, weight_decay=weight_decay) adamw_optimizer, muon_optimizer = optimizers # Override the initial learning rate as a fraction of the base learning rate for opt in optimizers: for group in opt.param_groups: group["lr"] = group["lr"] * init_lr_frac group["initial_lr"] = group["lr"] # save the initial learning so we can decay easily later # Midtraining data mixture and DataLoader base_dir = get_base_dir() train_dataset = TaskMixture([ SmolTalk(split="train"), # 460K rows of general conversations MMLU(subset="auxiliary_train", split="train"), # 100K rows of multiple choice problems drawn from ARC, MC_TEST, OBQA, RACE GSM8K(subset="main", split="train"), # 8K rows teaching simple math and (calculator) tool use ]) # total: 460K + 100K + 8K = 568K rows val_dataset = TaskMixture([ SmolTalk(split="test"), # 24K rows in test set MMLU(subset="all", split="test", stop=5200), # 14K rows in test set, use only 5.2K to match the train ratios GSM8K(subset="main", split="test", stop=420), # 1.32K rows in test set, use only 420 to match the train ratios ]) # total: 24K + 14K + 1.32K ~= 39K rows # DataLoader is defined here, it emits inputs, targets : 2D tensors of shape (device_batch_size, max_seq_len) # A big problem is that we don't know the final num_iterations in advance. So we create # these two global variables and update them from within the data generator. last_step = False # we will toggle this to True when we reach the end of the dataset approx_progress = 0.0 # will go from 0 to 1 over the course of the epoch def mid_data_generator(split): global last_step, approx_progress assert split in {"train", "val"}, "split must be 'train' or 'val'" dataset = train_dataset if split == "train" else val_dataset dataset_size = len(dataset) assert dataset_size > 0 needed_tokens = device_batch_size * max_seq_len + 1 # to form one training batch of inputs,targets token_buffer = deque() scratch = torch.empty(needed_tokens, dtype=torch.int64, pin_memory=True) cursor = ddp_rank # increments by ddp_world_size each time, so each rank processes unique documents while True: # Accumulate enough tokens for one iteration before yielding while len(token_buffer) < needed_tokens: conversation = dataset[cursor] ids, _ = tokenizer.render_conversation(conversation) token_buffer.extend(ids) cursor += ddp_world_size if cursor >= dataset_size: cursor -= dataset_size # wrap around for another epoch if split == "train": last_step = True # toggle last_step to True, which will terminate the training loop # Build up inputs/targets and yield for i in range(needed_tokens): scratch[i] = token_buffer.popleft() inputs_cpu = scratch[:-1].to(dtype=torch.int32) targets_cpu = scratch[1:] inputs = inputs_cpu.view(device_batch_size, max_seq_len).to(device=device, dtype=torch.int32, non_blocking=True) targets = targets_cpu.view(device_batch_size, max_seq_len).to(device=device, dtype=torch.int64, non_blocking=True) if split == "train": approx_progress = cursor / dataset_size # approximate progress as a fraction of the dataset yield inputs, targets train_loader = mid_data_generator("train") build_val_loader = lambda: mid_data_generator("val") progress = 0 # will go from 0 to 1 over the course of the epoch # Learning rate scheduler def get_lr_multiplier(progress): # first 80% of training: no decay, then linearly ramp down to 0. return 1 if progress < 0.8 else 1 - (progress - 0.8) / 0.2 # Momentum scheduler for Muon optimizer def get_muon_momentum(it): frac = min(it / 300, 1) momentum = (1 - frac) * 0.85 + frac * 0.95 return momentum # ----------------------------------------------------------------------------- # Training loop x, y = next(train_loader) # prefetch the very first batch of data min_val_bpb = float("inf") smooth_train_loss = 0 # EMA of training loss ema_beta = 0.9 # EMA decay factor total_training_time = 0 # total wall-clock time of training step = 0 while True: flops_so_far = num_flops_per_token * total_batch_size * step # Synchronize last_step across all ranks to avoid hangs in the distributed setting if ddp: last_step_tensor = torch.tensor(last_step, dtype=torch.int32, device=device) dist.all_reduce(last_step_tensor, op=dist.ReduceOp.MAX) last_step = bool(last_step_tensor.item()) # once in a while: evaluate the val bpb (all ranks participate) if last_step or step % eval_every == 0: model.eval() val_loader = build_val_loader() eval_steps = eval_tokens // (device_batch_size * max_seq_len * ddp_world_size) with autocast_ctx: val_bpb = evaluate_bpb(model, val_loader, eval_steps, token_bytes) print0(f"Step {step:05d} | Validation bpb: {val_bpb:.4f}") if val_bpb < min_val_bpb: min_val_bpb = val_bpb wandb_run.log({ "step": step, "total_training_flops": flops_so_far, "total_training_time": total_training_time, "val/bpb": val_bpb, }) model.train() # save checkpoint at the end of the run (only on master process) if master_process and last_step and not dry_run: output_dirname = f"d{depth}" # e.g. d12 checkpoint_dir = os.path.join(base_dir, "mid_checkpoints", output_dirname) save_checkpoint( checkpoint_dir, step, orig_model.state_dict(), [opt.state_dict() for opt in optimizers], # TODO: make sure saving across ranks is done correctly { "step": step, "val_bpb": val_bpb, # loss at last step "model_config": { "sequence_len": max_seq_len, "vocab_size": tokenizer.get_vocab_size(), "n_layer": depth, "n_head": model.config.n_head, "n_kv_head": model.config.n_kv_head, "n_embd": model.config.n_embd, }, "user_config": user_config, # inputs to the training script } ) if last_step: break # ------------------------------------------------------------------------- # single training step # evaluate the gradient torch.cuda.synchronize() t0 = time.time() for micro_step in range(grad_accum_steps): with autocast_ctx: loss = model(x, y) train_loss = loss.detach() # for logging loss = loss / grad_accum_steps # each .backward() is a grad sum => normalize loss here loss.backward() x, y = next(train_loader) # prefetch the next batch while the GPU is busy with forward/backward progress = max(progress, approx_progress) # only increase progress monotonically # step the optimizers lrm = get_lr_multiplier(progress) for opt in optimizers: for group in opt.param_groups: group["lr"] = group["initial_lr"] * lrm muon_momentum = get_muon_momentum(step) for group in muon_optimizer.param_groups: group["momentum"] = muon_momentum for opt in optimizers: opt.step() model.zero_grad(set_to_none=True) torch.cuda.synchronize() t1 = time.time() dt = t1 - t0 # ------------------------------------------------------------------------- # State step += 1 # logging smooth_train_loss = ema_beta * smooth_train_loss + (1 - ema_beta) * train_loss.item() # EMA the training loss debiased_smooth_loss = smooth_train_loss / (1 - ema_beta**(step + 1)) # debias the EMA pct_done = 100 * progress tok_per_sec = int(world_tokens_per_fwdbwd / dt) flops_per_sec = num_flops_per_token * total_batch_size / dt promised_flops_per_sec_h100 = 989e12 * ddp_world_size # bfloat16 H100 SXM and without 2:4 sparsity mfu = 100 * flops_per_sec / promised_flops_per_sec_h100 # in % if step > 10: total_training_time += dt # only count the time after the first 10 steps print0(f"step {step:05d} ({pct_done:.2f}%) | loss: {debiased_smooth_loss:.6f} | lrm: {lrm:.2f} | dt: {dt * 1000:.2f}ms | tok/sec: {tok_per_sec:,} | mfu: {mfu:.2f} | total time: {total_training_time/60:.2f}m") if step % 10 == 0: wandb_run.log({ "step": step, "total_training_flops": flops_so_far, "total_training_time": total_training_time, "train/loss": debiased_smooth_loss, "train/lrm": lrm, "train/dt": dt, "train/tok_per_sec": tok_per_sec, "train/mfu": mfu, }) # print a few more stats print0(f"Peak memory usage: {torch.cuda.max_memory_allocated() / 1024 / 1024:.2f}MiB") print0(f"Total training time: {total_training_time/60:.2f}m") print0(f"Minimum validation bpb: {min_val_bpb:.4f}") # Log to report if not dry_run: from nanochat.report import get_report get_report().log(section="Midtraining", data=[ user_config, # CLI args { # stats about the training setup "Number of iterations": step, "DDP world size": ddp_world_size, }, { # stats about training outcomes "Minimum validation bpb": min_val_bpb, } ]) # cleanup wandb_run.finish() # wandb run finish compute_cleanup()