Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,120 +1,101 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
-
import
|
| 4 |
-
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler
|
| 5 |
-
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
|
| 6 |
-
from diffusers.image_processor import VaeImageProcessor
|
| 7 |
-
from transformers import CLIPImageProcessor
|
| 8 |
from huggingface_hub import hf_hub_download
|
| 9 |
from safetensors.torch import load_file
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
-
|
| 12 |
-
dtype = torch.float16
|
| 13 |
|
|
|
|
| 14 |
base = "stabilityai/stable-diffusion-xl-base-1.0"
|
| 15 |
repo = "ByteDance/SDXL-Lightning"
|
| 16 |
-
|
| 17 |
-
"1
|
| 18 |
-
"2
|
| 19 |
-
"4
|
| 20 |
-
"8
|
| 21 |
}
|
| 22 |
|
| 23 |
-
# Inference function.
|
| 24 |
-
@spaces.GPU()
|
| 25 |
-
def generate(prompt, option, progress=gr.Progress()):
|
| 26 |
-
print(prompt, option)
|
| 27 |
-
ckpt, step = opts[option]
|
| 28 |
-
|
| 29 |
-
progress(0, desc="Initializing the model")
|
| 30 |
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
pipe = StableDiffusionXLPipeline.from_pretrained(base,
|
| 34 |
-
pipe.unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device=device))
|
| 35 |
-
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", prediction_type="sample" if step == 1 else "epsilon")
|
| 36 |
|
| 37 |
-
|
| 38 |
-
safety_checker
|
| 39 |
-
|
| 40 |
-
image_processor = VaeImageProcessor(vae_scale_factor=8)
|
| 41 |
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
progress((0, step))
|
| 48 |
-
results = pipe(prompt, num_inference_steps=step, guidance_scale=0, callback_on_step_end=inference_callback, output_type="pt")
|
| 49 |
-
|
| 50 |
-
# Safety check.
|
| 51 |
-
feature_extractor_input = image_processor.postprocess(results.images, output_type="pil")
|
| 52 |
-
safety_checker_input = feature_extractor(feature_extractor_input, return_tensors="pt")
|
| 53 |
-
pixel_values = safety_checker_input.pixel_values.to(device, dtype)
|
| 54 |
-
images, has_nsfw_concept = safety_checker(
|
| 55 |
-
images=results.images, clip_input=pixel_values
|
| 56 |
)
|
| 57 |
-
if has_nsfw_concept[0]:
|
| 58 |
-
print(f"Safety checker triggered on prompt: {prompt}")
|
| 59 |
-
return images[0]
|
| 60 |
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
with gr.Row():
|
| 69 |
-
prompt = gr.Textbox(
|
| 70 |
-
label="Text prompt",
|
| 71 |
-
scale=8
|
| 72 |
-
)
|
| 73 |
-
option = gr.Dropdown(
|
| 74 |
-
label="Inference steps",
|
| 75 |
-
choices=["1 Step", "2 Steps", "4 Steps", "8 Steps"],
|
| 76 |
-
value="4 Steps",
|
| 77 |
-
interactive=True
|
| 78 |
-
)
|
| 79 |
-
submit = gr.Button(
|
| 80 |
-
scale=1,
|
| 81 |
-
variant="primary"
|
| 82 |
)
|
| 83 |
-
|
| 84 |
-
img = gr.Image(label="SDXL-Lightning Generated Image")
|
| 85 |
|
| 86 |
-
|
| 87 |
-
fn=generate,
|
| 88 |
-
inputs=[prompt, option],
|
| 89 |
-
outputs=img,
|
| 90 |
-
)
|
| 91 |
-
submit.click(
|
| 92 |
-
fn=generate,
|
| 93 |
-
inputs=[prompt, option],
|
| 94 |
-
outputs=img,
|
| 95 |
-
)
|
| 96 |
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
["An owl perches quietly on a twisted branch deep within an ancient forest.", "1 Step"],
|
| 101 |
-
["A lion in the galaxy, octane render", "2 Steps"],
|
| 102 |
-
["A dolphin leaps through the waves, set against a backdrop of bright blues and teal hues.", "2 Steps"],
|
| 103 |
-
["A girl smiling", "4 Steps"],
|
| 104 |
-
["An astronaut riding a horse", "4 Steps"],
|
| 105 |
-
["A fish on a bicycle, colorful art", "4 Steps"],
|
| 106 |
-
["A close-up of an Asian lady with sunglasses.", "4 Steps"],
|
| 107 |
-
["Rabbit portrait in a forest, fantasy", "4 Steps"],
|
| 108 |
-
["A panda swimming", "4 Steps"],
|
| 109 |
-
["Man portrait, ethereal", "8 Steps"],
|
| 110 |
-
],
|
| 111 |
-
inputs=[prompt, option],
|
| 112 |
-
outputs=img,
|
| 113 |
-
cache_examples=False,
|
| 114 |
-
)
|
| 115 |
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
|
| 120 |
demo.queue().launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
+
from diffusers import StableDiffusionXLPipeline, EulerDiscreteScheduler
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
from huggingface_hub import hf_hub_download
|
| 5 |
from safetensors.torch import load_file
|
| 6 |
+
import spaces
|
| 7 |
+
import os
|
| 8 |
+
from PIL import Image
|
| 9 |
|
| 10 |
+
SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", "0") == "1"
|
|
|
|
| 11 |
|
| 12 |
+
# Constants
|
| 13 |
base = "stabilityai/stable-diffusion-xl-base-1.0"
|
| 14 |
repo = "ByteDance/SDXL-Lightning"
|
| 15 |
+
checkpoints = {
|
| 16 |
+
"1-Step" : ["sdxl_lightning_1step_unet_x0.safetensors", 1],
|
| 17 |
+
"2-Step" : ["sdxl_lightning_2step_unet.safetensors", 2],
|
| 18 |
+
"4-Step" : ["sdxl_lightning_4step_unet.safetensors", 4],
|
| 19 |
+
"8-Step" : ["sdxl_lightning_8step_unet.safetensors", 8],
|
| 20 |
}
|
| 21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
+
# Ensure model and scheduler are initialized in GPU-enabled function
|
| 24 |
+
if torch.cuda.is_available():
|
| 25 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(base, torch_dtype=torch.float16, variant="fp16").to("cuda")
|
|
|
|
|
|
|
| 26 |
|
| 27 |
+
if SAFETY_CHECKER:
|
| 28 |
+
from safety_checker import StableDiffusionSafetyChecker
|
| 29 |
+
from transformers import CLIPFeatureExtractor
|
|
|
|
| 30 |
|
| 31 |
+
safety_checker = StableDiffusionSafetyChecker.from_pretrained(
|
| 32 |
+
"CompVis/stable-diffusion-safety-checker"
|
| 33 |
+
).to("cuda")
|
| 34 |
+
feature_extractor = CLIPFeatureExtractor.from_pretrained(
|
| 35 |
+
"openai/clip-vit-base-patch32"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
)
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
+
def check_nsfw_images(
|
| 39 |
+
images: list[Image.Image],
|
| 40 |
+
) -> tuple[list[Image.Image], list[bool]]:
|
| 41 |
+
safety_checker_input = feature_extractor(images, return_tensors="pt").to("cuda")
|
| 42 |
+
has_nsfw_concepts = safety_checker(
|
| 43 |
+
images=[images],
|
| 44 |
+
clip_input=safety_checker_input.pixel_values.to("cuda")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
)
|
|
|
|
|
|
|
| 46 |
|
| 47 |
+
return images, has_nsfw_concepts
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
|
| 49 |
+
# Function
|
| 50 |
+
@spaces.GPU(enable_queue=True)
|
| 51 |
+
def generate_image(prompt, ckpt):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
+
checkpoint = checkpoints[ckpt][0]
|
| 54 |
+
num_inference_steps = checkpoints[ckpt][1]
|
| 55 |
+
|
| 56 |
+
if num_inference_steps==1:
|
| 57 |
+
# Ensure sampler uses "trailing" timesteps and "sample" prediction type for 1-step inference.
|
| 58 |
+
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", prediction_type="sample")
|
| 59 |
+
else:
|
| 60 |
+
# Ensure sampler uses "trailing" timesteps.
|
| 61 |
+
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
|
| 62 |
+
|
| 63 |
+
pipe.unet.load_state_dict(load_file(hf_hub_download(repo, checkpoint), device="cuda"))
|
| 64 |
+
results = pipe(prompt, num_inference_steps=num_inference_steps, guidance_scale=0)
|
| 65 |
+
|
| 66 |
+
if SAFETY_CHECKER:
|
| 67 |
+
images, has_nsfw_concepts = check_nsfw_images(results.images)
|
| 68 |
+
if any(has_nsfw_concepts):
|
| 69 |
+
gr.Warning("NSFW content detected.")
|
| 70 |
+
return Image.new("RGB", (512, 512))
|
| 71 |
+
return images[0]
|
| 72 |
+
return results.images[0]
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
# Gradio Interface
|
| 77 |
+
description = """
|
| 78 |
+
This demo utilizes the SDXL-Lightning model by ByteDance, which is a lightning-fast text-to-image generative model capable of producing high-quality images in 4 steps.
|
| 79 |
+
As a community effort, this demo was put together by AngryPenguin. Link to model: https://huggingface.co/ByteDance/SDXL-Lightning
|
| 80 |
+
"""
|
| 81 |
+
|
| 82 |
+
with gr.Blocks(css="style.css") as demo:
|
| 83 |
+
gr.HTML("<h1><center>Text-to-Image with SDXL-Lightning ⚡</center></h1>")
|
| 84 |
+
gr.Markdown(description)
|
| 85 |
+
with gr.Group():
|
| 86 |
+
with gr.Row():
|
| 87 |
+
prompt = gr.Textbox(label='Enter you image prompt:', scale=8)
|
| 88 |
+
ckpt = gr.Dropdown(label='Select inference steps',choices=['1-Step', '2-Step', '4-Step', '8-Step'], value='4-Step', interactive=True)
|
| 89 |
+
submit = gr.Button(scale=1, variant='primary')
|
| 90 |
+
img = gr.Image(label='SDXL-Lightning Generated Image')
|
| 91 |
+
|
| 92 |
+
prompt.submit(fn=generate_image,
|
| 93 |
+
inputs=[prompt, ckpt],
|
| 94 |
+
outputs=img,
|
| 95 |
+
)
|
| 96 |
+
submit.click(fn=generate_image,
|
| 97 |
+
inputs=[prompt, ckpt],
|
| 98 |
+
outputs=img,
|
| 99 |
+
)
|
| 100 |
|
| 101 |
demo.queue().launch()
|