Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,7 +7,6 @@ from diffusers.image_processor import VaeImageProcessor
|
|
| 7 |
from transformers import CLIPImageProcessor
|
| 8 |
from huggingface_hub import hf_hub_download
|
| 9 |
from safetensors.torch import load_file
|
| 10 |
-
from PIL import Image
|
| 11 |
|
| 12 |
device = "cuda"
|
| 13 |
dtype = torch.float16
|
|
@@ -21,30 +20,24 @@ opts = {
|
|
| 21 |
"8 Steps" : ("sdxl_lightning_8step_unet.safetensors", 8),
|
| 22 |
}
|
| 23 |
|
| 24 |
-
# Default to load 4-step model.
|
| 25 |
-
step_loaded = 4
|
| 26 |
-
unet = UNet2DConditionModel.from_config(base, subfolder="unet")
|
| 27 |
-
unet.load_state_dict(load_file(hf_hub_download(repo, opts["4 Steps"][0])))
|
| 28 |
-
pipe = StableDiffusionXLPipeline.from_pretrained(base, unet=unet, torch_dtype=dtype, variant="fp16")
|
| 29 |
-
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
|
| 30 |
-
|
| 31 |
-
# Safety checker.
|
| 32 |
-
safety_checker=StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker")
|
| 33 |
-
feature_extractor=CLIPImageProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
| 34 |
-
image_processor = VaeImageProcessor(vae_scale_factor=8)
|
| 35 |
-
|
| 36 |
# Inference function.
|
| 37 |
-
@spaces.GPU(
|
| 38 |
def generate(prompt, option, progress=gr.Progress()):
|
| 39 |
-
global step_loaded
|
| 40 |
print(prompt, option)
|
| 41 |
ckpt, step = opts[option]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
progress((0, step))
|
| 43 |
-
|
| 44 |
-
if pipe.device.type != device:
|
| 45 |
-
pipe.to(device, dtype)
|
| 46 |
-
if safety_checker.device.type != device:
|
| 47 |
-
safety_checker.to(device, dtype)
|
| 48 |
|
| 49 |
if step != step_loaded:
|
| 50 |
print(f"Switching checkpoint from {step_loaded} to {step}")
|
|
|
|
| 7 |
from transformers import CLIPImageProcessor
|
| 8 |
from huggingface_hub import hf_hub_download
|
| 9 |
from safetensors.torch import load_file
|
|
|
|
| 10 |
|
| 11 |
device = "cuda"
|
| 12 |
dtype = torch.float16
|
|
|
|
| 20 |
"8 Steps" : ("sdxl_lightning_8step_unet.safetensors", 8),
|
| 21 |
}
|
| 22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
# Inference function.
|
| 24 |
+
@spaces.GPU()
|
| 25 |
def generate(prompt, option, progress=gr.Progress()):
|
|
|
|
| 26 |
print(prompt, option)
|
| 27 |
ckpt, step = opts[option]
|
| 28 |
+
|
| 29 |
+
# Main pipeline.
|
| 30 |
+
unet = UNet2DConditionModel.from_config(base, subfolder="unet")
|
| 31 |
+
unet.load_state_dict(load_file(hf_hub_download(repo, opts["4 Steps"][0]))).to(device, dtype)
|
| 32 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(base, unet=unet, torch_dtype=dtype, variant="fp16")
|
| 33 |
+
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing").to(device, dtype)
|
| 34 |
+
|
| 35 |
+
# Safety checker.
|
| 36 |
+
safety_checker=StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker").to(device, dtype)
|
| 37 |
+
feature_extractor=CLIPImageProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
| 38 |
+
image_processor = VaeImageProcessor(vae_scale_factor=8)
|
| 39 |
+
|
| 40 |
progress((0, step))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
if step != step_loaded:
|
| 43 |
print(f"Switching checkpoint from {step_loaded} to {step}")
|