Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import spaces
|
| 4 |
+
from diffusers import StableDiffusionXLPipeline, EulerDiscreteScheduler
|
| 5 |
+
from huggingface_hub import hf_hub_download
|
| 6 |
+
from safetensors.torch import load_file
|
| 7 |
+
|
| 8 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 9 |
+
base = "stabilityai/stable-diffusion-xl-base-1.0"
|
| 10 |
+
repo = "ByteDance/SDXL-Lightning"
|
| 11 |
+
opts = {
|
| 12 |
+
"1 Step" : ["sdxl_lightning_1step_unet_x0.safetensors", 1],
|
| 13 |
+
"2 Steps" : ["sdxl_lightning_2step_unet.safetensors", 2],
|
| 14 |
+
"4 Steps" : ["sdxl_lightning_4step_unet.safetensors", 4],
|
| 15 |
+
"8 Steps" : ["sdxl_lightning_8step_unet.safetensors", 8],
|
| 16 |
+
}
|
| 17 |
+
|
| 18 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(base, torch_dtype=torch.float16, variant="fp16").to(device)
|
| 19 |
+
|
| 20 |
+
# Function
|
| 21 |
+
@spaces.GPU(enable_queue=True)
|
| 22 |
+
def generate_image(prompt, option):
|
| 23 |
+
ckpt, step = opts[option]
|
| 24 |
+
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", prediction_type="sample" if step == 1 else "epsilon")
|
| 25 |
+
pipe.unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device=device))
|
| 26 |
+
image = pipe(prompt, num_inference_steps=step, guidance_scale=0).images[0]
|
| 27 |
+
return image
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
with gr.Blocks() as demo:
|
| 31 |
+
gr.HTML("<h1><center>SDXL-Lightning ⚡</center></h1>")
|
| 32 |
+
gr.Markdown("Lightning-fast text-to-image generation! https://huggingface.co/ByteDance/SDXL-Lightning")
|
| 33 |
+
|
| 34 |
+
with gr.Group():
|
| 35 |
+
with gr.Row():
|
| 36 |
+
prompt = gr.Textbox(
|
| 37 |
+
label="Text prompt",
|
| 38 |
+
scale=8
|
| 39 |
+
)
|
| 40 |
+
option = gr.Dropdown(
|
| 41 |
+
label="Inference steps",
|
| 42 |
+
choices=["1 Step", "2 Steps", "4 Steps", "8 Steps"],
|
| 43 |
+
value="4-Step",
|
| 44 |
+
interactive=True
|
| 45 |
+
)
|
| 46 |
+
submit = gr.Button(
|
| 47 |
+
scale=1,
|
| 48 |
+
variant="primary"
|
| 49 |
+
)
|
| 50 |
+
|
| 51 |
+
img = gr.Image(label="SDXL-Lightening Generated Image")
|
| 52 |
+
|
| 53 |
+
prompt.submit(
|
| 54 |
+
fn=generate_image,
|
| 55 |
+
inputs=[prompt, option],
|
| 56 |
+
outputs=img,
|
| 57 |
+
)
|
| 58 |
+
submit.click(
|
| 59 |
+
fn=generate_image,
|
| 60 |
+
inputs=[prompt, option],
|
| 61 |
+
outputs=img,
|
| 62 |
+
)
|
| 63 |
+
|
| 64 |
+
demo.queue().launch()
|