Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -18,12 +18,13 @@ opts = {
|
|
| 18 |
step_loaded = 4
|
| 19 |
unet = UNet2DConditionModel.from_config(base, subfolder="unet").to(device, torch.float16)
|
| 20 |
unet.load_state_dict(load_file(hf_hub_download(repo, opts["4 Steps"][0]), device=device))
|
| 21 |
-
pipe = StableDiffusionXLPipeline.from_pretrained(base, torch_dtype=torch.float16, variant="fp16").to(device)
|
| 22 |
|
| 23 |
@spaces.GPU(enable_queue=True)
|
| 24 |
def generate_image(prompt, option):
|
|
|
|
| 25 |
ckpt, step = opts[option]
|
| 26 |
-
if
|
| 27 |
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", prediction_type="sample" if step == 1 else "epsilon")
|
| 28 |
pipe.unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device=device))
|
| 29 |
step_loaded = step
|
|
|
|
| 18 |
step_loaded = 4
|
| 19 |
unet = UNet2DConditionModel.from_config(base, subfolder="unet").to(device, torch.float16)
|
| 20 |
unet.load_state_dict(load_file(hf_hub_download(repo, opts["4 Steps"][0]), device=device))
|
| 21 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(base, unet=unet, torch_dtype=torch.float16, variant="fp16").to(device)
|
| 22 |
|
| 23 |
@spaces.GPU(enable_queue=True)
|
| 24 |
def generate_image(prompt, option):
|
| 25 |
+
global step_loaded
|
| 26 |
ckpt, step = opts[option]
|
| 27 |
+
if step != step_loaded:
|
| 28 |
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", prediction_type="sample" if step == 1 else "epsilon")
|
| 29 |
pipe.unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device=device))
|
| 30 |
step_loaded = step
|