Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -26,12 +26,17 @@ unet.load_state_dict(load_file(hf_hub_download(repo, opts["4 Steps"][0])))
|
|
| 26 |
pipe = StableDiffusionXLPipeline.from_pretrained(base, unet=unet, torch_dtype=dtype, variant="fp16").to(device, dtype)
|
| 27 |
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
|
| 28 |
|
|
|
|
|
|
|
|
|
|
| 29 |
# Inference function.
|
| 30 |
@spaces.GPU(enable_queue=True)
|
| 31 |
def generate(prompt, option, progress=gr.Progress()):
|
| 32 |
global step_loaded
|
| 33 |
print(prompt, option)
|
| 34 |
ckpt, step = opts[option]
|
|
|
|
|
|
|
| 35 |
progress((0, step))
|
| 36 |
if step != step_loaded:
|
| 37 |
print(f"Switching checkpoint from {step_loaded} to {step}")
|
|
|
|
| 26 |
pipe = StableDiffusionXLPipeline.from_pretrained(base, unet=unet, torch_dtype=dtype, variant="fp16").to(device, dtype)
|
| 27 |
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
|
| 28 |
|
| 29 |
+
with open("filter.txt") as f:
|
| 30 |
+
filter_words = {word for word in f.read().split("\n") if word}
|
| 31 |
+
|
| 32 |
# Inference function.
|
| 33 |
@spaces.GPU(enable_queue=True)
|
| 34 |
def generate(prompt, option, progress=gr.Progress()):
|
| 35 |
global step_loaded
|
| 36 |
print(prompt, option)
|
| 37 |
ckpt, step = opts[option]
|
| 38 |
+
if any(word in prompt for word in filter_words):
|
| 39 |
+
return None
|
| 40 |
progress((0, step))
|
| 41 |
if step != step_loaded:
|
| 42 |
print(f"Switching checkpoint from {step_loaded} to {step}")
|