File size: 1,920 Bytes
4bc1a11 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
import gradio as gr
import random
# Simulated cat breed classifier function
def classify_cat(image):
# In a real application, you'd use a proper ML model here
cat_breeds = ["Persian", "Siamese", "Maine Coon", "British Shorthair", "Russian Blue"]
confidence = random.uniform(0.7, 0.99)
return {breed: random.uniform(0.1, confidence) for breed in cat_breeds}
# Simulated cat fact generator
def generate_cat_fact(breed):
cat_facts = {
"Persian": "Persian cats are known for their long, luxurious fur and sweet personalities.",
"Siamese": "Siamese cats are vocal and intelligent, known for their striking blue eyes.",
"Maine Coon": "Maine Coons are one of the largest domestic cat breeds and love water!",
"British Shorthair": "British Shorthairs are calm and easygoing cats with plush coats.",
"Russian Blue": "Russian Blues are gentle and quiet cats with beautiful silver-blue fur."
}
return cat_facts.get(breed, "Please select a cat breed!")
# Create the Gradio interface
with gr.Blocks(title="Cat World Demo") as demo:
gr.Markdown("# Welcome to Cat World! 🐱")
with gr.Tab("Cat Breed Classifier"):
with gr.Row():
image_input = gr.Image(label="Upload a cat image")
output = gr.Label(label="Predicted Breeds")
classify_btn = gr.Button("Classify Cat")
classify_btn.click(fn=classify_cat, inputs=image_input, outputs=output)
with gr.Tab("Cat Facts"):
breed_dropdown = gr.Dropdown(
choices=["Persian", "Siamese", "Maine Coon", "British Shorthair", "Russian Blue"],
label="Select a cat breed"
)
fact_output = gr.Textbox(label="Cat Fact")
fact_btn = gr.Button("Get Cat Fact")
fact_btn.click(fn=generate_cat_fact, inputs=breed_dropdown, outputs=fact_output)
# Launch the demo
if __name__ == "__main__":
demo.launch() |