Spaces:
Sleeping
Sleeping
Upload app.py with huggingface_hub
Browse files
app.py
ADDED
|
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import torch
|
| 4 |
+
from PIL import Image
|
| 5 |
+
from transformers import AutoModel, AutoTokenizer
|
| 6 |
+
|
| 7 |
+
MODEL_ID = os.environ.get("MINICPM_MODEL_ID", "openbmb/MiniCPM-V-4_5")
|
| 8 |
+
|
| 9 |
+
# Best practice: set a deterministic seed for reproducibility
|
| 10 |
+
torch.manual_seed(100)
|
| 11 |
+
|
| 12 |
+
def load_model(precision_mode="int4"):
|
| 13 |
+
"""
|
| 14 |
+
Load MiniCPM-V-4_5 model on CPU with chosen precision.
|
| 15 |
+
- precision_mode: "int4" (default) quantized or "fp16" half precision emulation.
|
| 16 |
+
Note: True FP16 tensors are not supported on CPU; we use bfloat16 or float32 fallback.
|
| 17 |
+
"""
|
| 18 |
+
kwargs = dict(trust_remote_code=True, attn_implementation="sdpa")
|
| 19 |
+
|
| 20 |
+
if precision_mode == "int4":
|
| 21 |
+
# BitsAndBytes is not available for CPU only in Transformers' AutoModel consistently across archs,
|
| 22 |
+
# but MiniCPM provides CPU-friendly quantization via trust_remote_code. We'll pass load_in_4bit if supported.
|
| 23 |
+
try:
|
| 24 |
+
model = AutoModel.from_pretrained(
|
| 25 |
+
MODEL_ID,
|
| 26 |
+
load_in_4bit=True,
|
| 27 |
+
device_map="cpu",
|
| 28 |
+
**kwargs,
|
| 29 |
+
)
|
| 30 |
+
dtype_used = "int4"
|
| 31 |
+
except Exception:
|
| 32 |
+
# Fallback: load in 8-bit or bf16 if 4-bit isn't supported in environment
|
| 33 |
+
model = AutoModel.from_pretrained(
|
| 34 |
+
MODEL_ID,
|
| 35 |
+
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
|
| 36 |
+
device_map="cpu",
|
| 37 |
+
**kwargs,
|
| 38 |
+
)
|
| 39 |
+
dtype_used = "fallback_bf16_or_fp32"
|
| 40 |
+
else:
|
| 41 |
+
# "fp16" requested: CPU cannot run native fp16; we emulate with bfloat16 if available, otherwise float32
|
| 42 |
+
# Many Intel/AMD CPUs support bfloat16 acceleration; if not, it will still run in fp32 math.
|
| 43 |
+
model = AutoModel.from_pretrained(
|
| 44 |
+
MODEL_ID,
|
| 45 |
+
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
|
| 46 |
+
device_map="cpu",
|
| 47 |
+
**kwargs,
|
| 48 |
+
)
|
| 49 |
+
dtype_used = "bf16_or_fp32_on_cpu_for_fp16_request"
|
| 50 |
+
|
| 51 |
+
model = model.eval()
|
| 52 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
|
| 53 |
+
return model, tokenizer, dtype_used
|
| 54 |
+
|
| 55 |
+
# Global cache to avoid reloading each time
|
| 56 |
+
_state = {"model": None, "tokenizer": None, "mode": None, "dtype_used": None}
|
| 57 |
+
|
| 58 |
+
def ensure_model(mode):
|
| 59 |
+
if _state["model"] is None or _state["mode"] != mode:
|
| 60 |
+
_state["model"], _state["tokenizer"], _state["dtype_used"] = load_model(mode)
|
| 61 |
+
_state["mode"] = mode
|
| 62 |
+
|
| 63 |
+
def chat_infer(image: Image.Image, message: str, history, mode: str, enable_thinking: bool):
|
| 64 |
+
if image is None and (not history or all((h[0] or "") == "" and (h[1] or "") == "" for h in history)):
|
| 65 |
+
return history or [], "Please upload an image or enter a message."
|
| 66 |
+
ensure_model(mode)
|
| 67 |
+
model, tokenizer = _state["model"], _state["tokenizer"]
|
| 68 |
+
|
| 69 |
+
# Build msgs from history and current inputs
|
| 70 |
+
msgs = []
|
| 71 |
+
# Convert history into msgs
|
| 72 |
+
# Each item in history is (user, assistant)
|
| 73 |
+
for user_msg, assistant_msg in history or []:
|
| 74 |
+
if user_msg:
|
| 75 |
+
# history may not contain images; only text
|
| 76 |
+
msgs.append({"role": "user", "content": [user_msg]})
|
| 77 |
+
if assistant_msg:
|
| 78 |
+
msgs.append({"role": "assistant", "content": [assistant_msg]})
|
| 79 |
+
|
| 80 |
+
# Add current user turn
|
| 81 |
+
user_content = []
|
| 82 |
+
if image is not None:
|
| 83 |
+
# Ensure RGB
|
| 84 |
+
if image.mode != "RGB":
|
| 85 |
+
image = image.convert("RGB")
|
| 86 |
+
user_content.append(image)
|
| 87 |
+
if message and message.strip():
|
| 88 |
+
user_content.append(message.strip())
|
| 89 |
+
if not user_content:
|
| 90 |
+
return history or [], "Please provide text or image."
|
| 91 |
+
|
| 92 |
+
msgs.append({"role": "user", "content": user_content})
|
| 93 |
+
|
| 94 |
+
try:
|
| 95 |
+
answer = model.chat(
|
| 96 |
+
msgs=msgs,
|
| 97 |
+
tokenizer=tokenizer,
|
| 98 |
+
enable_thinking=enable_thinking,
|
| 99 |
+
)
|
| 100 |
+
except Exception as e:
|
| 101 |
+
return history or [], f"Inference error: {e}"
|
| 102 |
+
|
| 103 |
+
# Update history for Gradio chat UI: append the latest pair
|
| 104 |
+
history = (history or []) + [(message or "[Image]", answer)]
|
| 105 |
+
sys_info = f"Mode: {mode} | Loaded dtype: {_state['dtype_used']} | Device: CPU"
|
| 106 |
+
return history, sys_info
|
| 107 |
+
|
| 108 |
+
def clear_history():
|
| 109 |
+
return [], ""
|
| 110 |
+
|
| 111 |
+
with gr.Blocks(title="MiniCPM-V-4_5 CPU (int4 default, fp16 optional)", fill_height=True) as demo:
|
| 112 |
+
gr.Markdown("# MiniCPM-V-4_5 CPU Deployment\n- Modes: int4 (default) and fp16\n- Running on CPU")
|
| 113 |
+
|
| 114 |
+
with gr.Row():
|
| 115 |
+
with gr.Column(scale=2):
|
| 116 |
+
chatbox = gr.Chatbot(height=420, label="Chat")
|
| 117 |
+
with gr.Row():
|
| 118 |
+
img = gr.Image(type="pil", label="Image (optional)")
|
| 119 |
+
msg = gr.Textbox(placeholder="Ask a question about the image or general query...", lines=3)
|
| 120 |
+
with gr.Row():
|
| 121 |
+
send_btn = gr.Button("Send", variant="primary")
|
| 122 |
+
clear_btn = gr.Button("Clear")
|
| 123 |
+
with gr.Column(scale=1):
|
| 124 |
+
mode = gr.Radio(
|
| 125 |
+
choices=["int4", "fp16"],
|
| 126 |
+
value="int4",
|
| 127 |
+
label="Precision Mode (CPU)",
|
| 128 |
+
info="int4 as default. fp16 uses bf16/fp32 on CPU."
|
| 129 |
+
)
|
| 130 |
+
thinking = gr.Checkbox(label="Enable Thinking Mode", value=False)
|
| 131 |
+
sys_out = gr.Markdown("")
|
| 132 |
+
|
| 133 |
+
def on_send(message, image, history, mode, thinking):
|
| 134 |
+
return chat_infer(image, message, history, mode, thinking)
|
| 135 |
+
|
| 136 |
+
send_btn.click(
|
| 137 |
+
fn=on_send,
|
| 138 |
+
inputs=[msg, img, chatbox, mode, thinking],
|
| 139 |
+
outputs=[chatbox, sys_out],
|
| 140 |
+
show_progress=True,
|
| 141 |
+
)
|
| 142 |
+
|
| 143 |
+
# Submit on Enter
|
| 144 |
+
msg.submit(
|
| 145 |
+
fn=on_send,
|
| 146 |
+
inputs=[msg, img, chatbox, mode, thinking],
|
| 147 |
+
outputs=[chatbox, sys_out],
|
| 148 |
+
show_progress=True,
|
| 149 |
+
)
|
| 150 |
+
|
| 151 |
+
clear_btn.click(fn=clear_history, outputs=[chatbox, sys_out])
|
| 152 |
+
|
| 153 |
+
if __name__ == "__main__":
|
| 154 |
+
# For CPU environments with many threads, you may limit to reduce contention:
|
| 155 |
+
torch.set_num_threads(int(os.environ.get("TORCH_NUM_THREADS", "4")))
|
| 156 |
+
demo.launch()
|