Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -11,7 +11,8 @@ from huggingface_hub.repocard import metadata_load
|
|
| 11 |
app = gr.Blocks()
|
| 12 |
|
| 13 |
model_id_1 = "nlptown/bert-base-multilingual-uncased-sentiment"
|
| 14 |
-
model_id_2 = "
|
|
|
|
| 15 |
|
| 16 |
def load_agent(model_id):
|
| 17 |
"""
|
|
@@ -19,11 +20,9 @@ def load_agent(model_id):
|
|
| 19 |
"""
|
| 20 |
# Load the metrics
|
| 21 |
metadata = get_metadata(model_id)
|
| 22 |
-
|
| 23 |
# get predictions
|
| 24 |
predictions = predict(model_id)
|
| 25 |
|
| 26 |
-
|
| 27 |
return model_id, predictions
|
| 28 |
|
| 29 |
|
|
@@ -47,12 +46,11 @@ def get_prediction(model_id):
|
|
| 47 |
|
| 48 |
def predict(review):
|
| 49 |
prediction = classifier(review)
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
return prediction
|
| 56 |
return predict
|
| 57 |
|
| 58 |
with app:
|
|
@@ -79,20 +77,32 @@ with app:
|
|
| 79 |
btn1 = gr.Button("Predict for Model 1")
|
| 80 |
with gr.Row():
|
| 81 |
out_1 = gr.Textbox(label="Prediction for Model 1")
|
| 82 |
-
|
| 83 |
-
# classifier = pipeline("text-classification", model)
|
| 84 |
btn1.click(fn=get_prediction(model_id_1), inputs=inp_1, outputs=out_1)
|
| 85 |
|
| 86 |
gr.Markdown(
|
| 87 |
"""
|
| 88 |
-
Model 2 =
|
| 89 |
""")
|
| 90 |
|
| 91 |
with gr.Row():
|
| 92 |
btn2 = gr.Button("Predict for Model 2")
|
| 93 |
with gr.Row():
|
| 94 |
-
out_2 = gr.Textbox(label="Prediction for Model 2")
|
| 95 |
-
classifier = pipeline("text-classification", model=model_id_2)
|
| 96 |
btn2.click(fn=get_prediction(model_id_2), inputs=inp_1, outputs=out_2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
|
| 98 |
app.launch()
|
|
|
|
| 11 |
app = gr.Blocks()
|
| 12 |
|
| 13 |
model_id_1 = "nlptown/bert-base-multilingual-uncased-sentiment"
|
| 14 |
+
model_id_2 = "microsoft/deberta-base"
|
| 15 |
+
model_id_3 = "juliensimon/distilbert-amazon-shoe-reviews"
|
| 16 |
|
| 17 |
def load_agent(model_id):
|
| 18 |
"""
|
|
|
|
| 20 |
"""
|
| 21 |
# Load the metrics
|
| 22 |
metadata = get_metadata(model_id)
|
|
|
|
| 23 |
# get predictions
|
| 24 |
predictions = predict(model_id)
|
| 25 |
|
|
|
|
| 26 |
return model_id, predictions
|
| 27 |
|
| 28 |
|
|
|
|
| 46 |
|
| 47 |
def predict(review):
|
| 48 |
prediction = classifier(review)
|
| 49 |
+
predictions = []
|
| 50 |
+
for p in prediction:
|
| 51 |
+
new_pred = print(p)
|
| 52 |
+
predictions.append(new_pred)
|
| 53 |
+
return predictions
|
|
|
|
| 54 |
return predict
|
| 55 |
|
| 56 |
with app:
|
|
|
|
| 77 |
btn1 = gr.Button("Predict for Model 1")
|
| 78 |
with gr.Row():
|
| 79 |
out_1 = gr.Textbox(label="Prediction for Model 1")
|
|
|
|
|
|
|
| 80 |
btn1.click(fn=get_prediction(model_id_1), inputs=inp_1, outputs=out_1)
|
| 81 |
|
| 82 |
gr.Markdown(
|
| 83 |
"""
|
| 84 |
+
Model 2 = microsoft/deberta-base
|
| 85 |
""")
|
| 86 |
|
| 87 |
with gr.Row():
|
| 88 |
btn2 = gr.Button("Predict for Model 2")
|
| 89 |
with gr.Row():
|
| 90 |
+
out_2 = gr.Textbox(label="Prediction for Model 2")
|
|
|
|
| 91 |
btn2.click(fn=get_prediction(model_id_2), inputs=inp_1, outputs=out_2)
|
| 92 |
+
|
| 93 |
+
gr.Markdown(
|
| 94 |
+
"""
|
| 95 |
+
Model 3 = juliensimon/distilbert-amazon-shoe-reviews
|
| 96 |
+
""")
|
| 97 |
+
|
| 98 |
+
with gr.Row():
|
| 99 |
+
btn3 = gr.Button("Predict for Model 3")
|
| 100 |
+
with gr.Row():
|
| 101 |
+
out_3 = gr.Textbox(label="Prediction for Model 3")
|
| 102 |
+
classifier = pipeline("text-classification", model=model_id_3)
|
| 103 |
+
btn3.click(fn=get_prediction(model_id_2), inputs=inp_1, outputs=out_3)
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
|
| 107 |
|
| 108 |
app.launch()
|