Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,8 +1,14 @@
|
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
import requests.exceptions
|
| 3 |
from huggingface_hub import HfApi, hf_hub_download
|
| 4 |
from huggingface_hub.repocard import metadata_load
|
| 5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
app = gr.Blocks()
|
| 7 |
|
| 8 |
def load_agent(model_id_1, model_id_2):
|
|
@@ -16,18 +22,12 @@ def load_agent(model_id_1, model_id_2):
|
|
| 16 |
# Get the accuracy
|
| 17 |
results_1 = parse_metrics_accuracy(metadata_1)
|
| 18 |
|
| 19 |
-
# Load the video
|
| 20 |
-
#video_path_1 = hf_hub_download(model_id_1, filename="replay.mp4")
|
| 21 |
-
|
| 22 |
# Load the metrics
|
| 23 |
metadata_2 = get_metadata(model_id_2)
|
| 24 |
|
| 25 |
# Get the accuracy
|
| 26 |
results_2 = parse_metrics_accuracy(metadata_2)
|
| 27 |
-
|
| 28 |
-
# Load the video
|
| 29 |
-
#video_path_2 = hf_hub_download(model_id_2, filename="replay.mp4")
|
| 30 |
-
|
| 31 |
return model_id_1, results_1, model_id_2, results_2
|
| 32 |
|
| 33 |
def parse_metrics_accuracy(meta):
|
|
@@ -53,8 +53,6 @@ def get_metadata(model_id):
|
|
| 53 |
return None
|
| 54 |
|
| 55 |
|
| 56 |
-
|
| 57 |
-
|
| 58 |
with app:
|
| 59 |
gr.Markdown(
|
| 60 |
"""
|
|
@@ -71,11 +69,11 @@ with app:
|
|
| 71 |
with gr.Column():
|
| 72 |
model1_name = gr.Markdown()
|
| 73 |
#model1_video_output = gr.Video()
|
| 74 |
-
model1_score_output = gr.Textbox(label="
|
| 75 |
with gr.Column():
|
| 76 |
model2_name = gr.Markdown()
|
| 77 |
#model2_video_output = gr.Video()
|
| 78 |
-
model2_score_output = gr.Textbox(label="
|
| 79 |
|
| 80 |
app_button.click(load_agent, inputs=[model1_input, model2_input], outputs=[model1_name, model1_score_output, model2_name, model2_score_output])
|
| 81 |
|
|
|
|
| 1 |
+
import sklearn
|
| 2 |
import gradio as gr
|
| 3 |
+
import joblib
|
| 4 |
import requests.exceptions
|
| 5 |
from huggingface_hub import HfApi, hf_hub_download
|
| 6 |
from huggingface_hub.repocard import metadata_load
|
| 7 |
|
| 8 |
+
pipe = joblib.load("./pipeline.pkl")
|
| 9 |
+
inputs = [gr.Textbox(value = "The customer service was satisfactory.")]
|
| 10 |
+
outputs = [gr.Label(label = "Sentiment")]
|
| 11 |
+
title = "Sentiment Analysis"
|
| 12 |
app = gr.Blocks()
|
| 13 |
|
| 14 |
def load_agent(model_id_1, model_id_2):
|
|
|
|
| 22 |
# Get the accuracy
|
| 23 |
results_1 = parse_metrics_accuracy(metadata_1)
|
| 24 |
|
|
|
|
|
|
|
|
|
|
| 25 |
# Load the metrics
|
| 26 |
metadata_2 = get_metadata(model_id_2)
|
| 27 |
|
| 28 |
# Get the accuracy
|
| 29 |
results_2 = parse_metrics_accuracy(metadata_2)
|
| 30 |
+
|
|
|
|
|
|
|
|
|
|
| 31 |
return model_id_1, results_1, model_id_2, results_2
|
| 32 |
|
| 33 |
def parse_metrics_accuracy(meta):
|
|
|
|
| 53 |
return None
|
| 54 |
|
| 55 |
|
|
|
|
|
|
|
| 56 |
with app:
|
| 57 |
gr.Markdown(
|
| 58 |
"""
|
|
|
|
| 69 |
with gr.Column():
|
| 70 |
model1_name = gr.Markdown()
|
| 71 |
#model1_video_output = gr.Video()
|
| 72 |
+
model1_score_output = gr.Textbox(label="Sentiment")
|
| 73 |
with gr.Column():
|
| 74 |
model2_name = gr.Markdown()
|
| 75 |
#model2_video_output = gr.Video()
|
| 76 |
+
model2_score_output = gr.Textbox(label="Sentiment")
|
| 77 |
|
| 78 |
app_button.click(load_agent, inputs=[model1_input, model2_input], outputs=[model1_name, model1_score_output, model2_name, model2_score_output])
|
| 79 |
|