Spaces:
Paused
Paused
| # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved | |
| """ | |
| Misc functions, including distributed helpers. | |
| Mostly copy-paste from torchvision references. | |
| """ | |
| import os | |
| import subprocess | |
| import time | |
| from collections import defaultdict, deque | |
| import datetime | |
| import pickle | |
| from typing import Optional, List | |
| import torch | |
| import torch.distributed as dist | |
| from torch import Tensor | |
| from bisect import bisect_right | |
| from torch.optim.lr_scheduler import _LRScheduler | |
| # needed due to empty tensor bug in pytorch and torchvision 0.5 | |
| import torchvision | |
| class SmoothedValue(object): | |
| """Track a series of values and provide access to smoothed values over a | |
| window or the global series average. | |
| """ | |
| def __init__(self, window_size=20, fmt=None): | |
| if fmt is None: | |
| fmt = "{median:.4f} ({global_avg:.4f})" | |
| self.deque = deque(maxlen=window_size) | |
| self.total = 0.0 | |
| self.count = 0 | |
| self.fmt = fmt | |
| def update(self, value, n=1): | |
| self.deque.append(value) | |
| self.count += n | |
| self.total += value * n | |
| def synchronize_between_processes(self): | |
| """ | |
| Warning: does not synchronize the deque! | |
| """ | |
| if not is_dist_avail_and_initialized(): | |
| return | |
| t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda') | |
| dist.barrier() | |
| dist.all_reduce(t) | |
| t = t.tolist() | |
| self.count = int(t[0]) | |
| self.total = t[1] | |
| def median(self): | |
| d = torch.tensor(list(self.deque)) | |
| return d.median().item() | |
| def avg(self): | |
| d = torch.tensor(list(self.deque), dtype=torch.float32) | |
| return d.mean().item() | |
| def global_avg(self): | |
| return self.total / self.count | |
| def max(self): | |
| return max(self.deque) | |
| def value(self): | |
| return self.deque[-1] | |
| def __str__(self): | |
| return self.fmt.format( | |
| median=self.median, | |
| avg=self.avg, | |
| global_avg=self.global_avg, | |
| max=self.max, | |
| value=self.value) | |
| def all_gather(data): | |
| """ | |
| Run all_gather on arbitrary picklable data (not necessarily tensors) | |
| Args: | |
| data: any picklable object | |
| Returns: | |
| list[data]: list of data gathered from each rank | |
| """ | |
| world_size = get_world_size() | |
| if world_size == 1: | |
| return [data] | |
| # serialized to a Tensor | |
| buffer = pickle.dumps(data) | |
| storage = torch.ByteStorage.from_buffer(buffer) | |
| tensor = torch.ByteTensor(storage).to("cuda") | |
| # obtain Tensor size of each rank | |
| local_size = torch.tensor([tensor.numel()], device="cuda") | |
| size_list = [torch.tensor([0], device="cuda") for _ in range(world_size)] | |
| dist.all_gather(size_list, local_size) | |
| size_list = [int(size.item()) for size in size_list] | |
| max_size = max(size_list) | |
| # receiving Tensor from all ranks | |
| # we pad the tensor because torch all_gather does not support | |
| # gathering tensors of different shapes | |
| tensor_list = [] | |
| for _ in size_list: | |
| tensor_list.append(torch.empty((max_size,), dtype=torch.uint8, device="cuda")) | |
| if local_size != max_size: | |
| padding = torch.empty(size=(max_size - local_size,), dtype=torch.uint8, device="cuda") | |
| tensor = torch.cat((tensor, padding), dim=0) | |
| dist.all_gather(tensor_list, tensor) | |
| data_list = [] | |
| for size, tensor in zip(size_list, tensor_list): | |
| buffer = tensor.cpu().numpy().tobytes()[:size] | |
| data_list.append(pickle.loads(buffer)) | |
| return data_list | |
| def reduce_dict(input_dict, average=True): | |
| """ | |
| Args: | |
| input_dict (dict): all the values will be reduced | |
| average (bool): whether to do average or sum | |
| Reduce the values in the dictionary from all processes so that all processes | |
| have the averaged results. Returns a dict with the same fields as | |
| input_dict, after reduction. | |
| """ | |
| world_size = get_world_size() | |
| if world_size < 2: | |
| return input_dict | |
| with torch.no_grad(): | |
| names = [] | |
| values = [] | |
| # sort the keys so that they are consistent across processes | |
| for k in sorted(input_dict.keys()): | |
| names.append(k) | |
| values.append(input_dict[k]) | |
| values = torch.stack(values, dim=0) | |
| dist.all_reduce(values) | |
| if average: | |
| values /= world_size | |
| reduced_dict = {k: v for k, v in zip(names, values)} | |
| return reduced_dict | |
| class MetricLogger(object): | |
| def __init__(self, delimiter="\t"): | |
| self.meters = defaultdict(SmoothedValue) | |
| self.delimiter = delimiter | |
| def update(self, **kwargs): | |
| for k, v in kwargs.items(): | |
| if isinstance(v, torch.Tensor): | |
| v = v.item() | |
| assert isinstance(v, (float, int)) | |
| self.meters[k].update(v) | |
| def __getattr__(self, attr): | |
| if attr in self.meters: | |
| return self.meters[attr] | |
| if attr in self.__dict__: | |
| return self.__dict__[attr] | |
| raise AttributeError("'{}' object has no attribute '{}'".format( | |
| type(self).__name__, attr)) | |
| def __str__(self): | |
| loss_str = [] | |
| for name, meter in self.meters.items(): | |
| loss_str.append( | |
| "{}: {}".format(name, str(meter)) | |
| ) | |
| return self.delimiter.join(loss_str) | |
| def synchronize_between_processes(self): | |
| for meter in self.meters.values(): | |
| meter.synchronize_between_processes() | |
| def add_meter(self, name, meter): | |
| self.meters[name] = meter | |
| def log_every(self, iterable, print_freq, header=None): | |
| i = 0 | |
| if not header: | |
| header = '' | |
| start_time = time.time() | |
| end = time.time() | |
| iter_time = SmoothedValue(fmt='{avg:.4f}') | |
| data_time = SmoothedValue(fmt='{avg:.4f}') | |
| space_fmt = ':' + str(len(str(len(iterable)))) + 'd' | |
| if torch.cuda.is_available(): | |
| log_msg = self.delimiter.join([ | |
| header, | |
| '[{0' + space_fmt + '}/{1}]', | |
| 'eta: {eta}', | |
| '{meters}', | |
| 'time: {time}', | |
| 'data: {data}', | |
| 'max mem: {memory:.0f}' | |
| ]) | |
| else: | |
| log_msg = self.delimiter.join([ | |
| header, | |
| '[{0' + space_fmt + '}/{1}]', | |
| 'eta: {eta}', | |
| '{meters}', | |
| 'time: {time}', | |
| 'data: {data}' | |
| ]) | |
| MB = 1024.0 * 1024.0 | |
| for obj in iterable: | |
| data_time.update(time.time() - end) | |
| yield obj | |
| iter_time.update(time.time() - end) | |
| if i % print_freq == 0 or i == len(iterable) - 1: | |
| eta_seconds = iter_time.global_avg * (len(iterable) - i) | |
| eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) | |
| if torch.cuda.is_available(): | |
| print(log_msg.format( | |
| i, len(iterable), eta=eta_string, | |
| meters=str(self), | |
| time=str(iter_time), data=str(data_time), | |
| memory=torch.cuda.max_memory_allocated() / MB)) | |
| else: | |
| print(log_msg.format( | |
| i, len(iterable), eta=eta_string, | |
| meters=str(self), | |
| time=str(iter_time), data=str(data_time))) | |
| i += 1 | |
| end = time.time() | |
| total_time = time.time() - start_time | |
| total_time_str = str(datetime.timedelta(seconds=int(total_time))) | |
| print('{} Total time: {} ({:.4f} s / it)'.format( | |
| header, total_time_str, total_time / len(iterable))) | |
| def get_sha(): | |
| cwd = os.path.dirname(os.path.abspath(__file__)) | |
| def _run(command): | |
| return subprocess.check_output(command, cwd=cwd).decode('ascii').strip() | |
| sha = 'N/A' | |
| diff = "clean" | |
| branch = 'N/A' | |
| try: | |
| sha = _run(['git', 'rev-parse', 'HEAD']) | |
| subprocess.check_output(['git', 'diff'], cwd=cwd) | |
| diff = _run(['git', 'diff-index', 'HEAD']) | |
| diff = "has uncommited changes" if diff else "clean" | |
| branch = _run(['git', 'rev-parse', '--abbrev-ref', 'HEAD']) | |
| except Exception: | |
| pass | |
| message = f"sha: {sha}, status: {diff}, branch: {branch}" | |
| return message | |
| def collate_fn(batch): | |
| batch = list(zip(*batch)) | |
| if len(batch) > 2: | |
| batch[0] = nested_tensor_from_tensor_list(batch[0] + batch[1], batch[2] + batch[3]) | |
| return tuple([batch[0], batch[2] + batch[3]]) | |
| else: | |
| batch[0] = nested_tensor_from_tensor_list(batch[0], batch[1]) | |
| return tuple(batch) | |
| def _max_by_axis(the_list): | |
| # type: (List[List[int]]) -> List[int] | |
| maxes = the_list[0] | |
| for sublist in the_list[1:]: | |
| for index, item in enumerate(sublist): | |
| maxes[index] = max(maxes[index], item) | |
| return maxes | |
| class NestedTensor(object): | |
| def __init__(self, tensors, mask: Optional[Tensor]): | |
| self.tensors = tensors | |
| self.mask = mask | |
| def to(self, device): | |
| # type: (Device) -> NestedTensor # noqa | |
| cast_tensor = self.tensors.to(device) | |
| mask = self.mask | |
| if mask is not None: | |
| assert mask is not None | |
| cast_mask = mask.to(device) | |
| else: | |
| cast_mask = None | |
| return NestedTensor(cast_tensor, cast_mask) | |
| def decompose(self): | |
| return self.tensors, self.mask | |
| def __repr__(self): | |
| return str(self.tensors) | |
| def nested_tensor_from_tensor_list(tensor_list: List[Tensor], target_list=None): | |
| # TODO make this more general | |
| if tensor_list[0].ndim == 3: | |
| if torchvision._is_tracing(): | |
| # nested_tensor_from_tensor_list() does not export well to ONNX | |
| # call _onnx_nested_tensor_from_tensor_list() instead | |
| return _onnx_nested_tensor_from_tensor_list(tensor_list) | |
| # TODO make it support different-sized images | |
| max_size = _max_by_axis([list(img.shape) for img in tensor_list]) | |
| # min_size = tuple(min(s) for s in zip(*[img.shape for img in tensor_list])) | |
| batch_shape = [len(tensor_list)] + max_size | |
| b, c, h, w = batch_shape | |
| dtype = tensor_list[0].dtype | |
| device = tensor_list[0].device | |
| tensor = torch.zeros(batch_shape, dtype=dtype, device=device) | |
| mask = torch.ones((b, h, w), dtype=torch.bool, device=device) | |
| if target_list is not None: | |
| for img, pad_img, m, target in zip(tensor_list, tensor, mask, target_list): | |
| pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img) | |
| size = target["size"] | |
| m[:size[0], :size[1]] = False | |
| else: | |
| for img, pad_img, m in zip(tensor_list, tensor, mask): | |
| pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img) | |
| m[: img.shape[1], :img.shape[2]] = False | |
| else: | |
| raise ValueError('not supported') | |
| return NestedTensor(tensor, mask) | |
| # _onnx_nested_tensor_from_tensor_list() is an implementation of | |
| # nested_tensor_from_tensor_list() that is supported by ONNX tracing. | |
| def _onnx_nested_tensor_from_tensor_list(tensor_list: List[Tensor]) -> NestedTensor: | |
| max_size = [] | |
| for i in range(tensor_list[0].dim()): | |
| max_size_i = torch.max(torch.stack([img.shape[i] for img in tensor_list]).to(torch.float32)).to(torch.int64) | |
| max_size.append(max_size_i) | |
| max_size = tuple(max_size) | |
| # work around for | |
| # pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img) | |
| # m[: img.shape[1], :img.shape[2]] = False | |
| # which is not yet supported in onnx | |
| padded_imgs = [] | |
| padded_masks = [] | |
| for img in tensor_list: | |
| padding = [(s1 - s2) for s1, s2 in zip(max_size, tuple(img.shape))] | |
| padded_img = torch.nn.functional.pad(img, (0, padding[2], 0, padding[1], 0, padding[0])) | |
| padded_imgs.append(padded_img) | |
| m = torch.zeros_like(img[0], dtype=torch.int, device=img.device) | |
| padded_mask = torch.nn.functional.pad(m, (0, padding[2], 0, padding[1]), "constant", 1) | |
| padded_masks.append(padded_mask.to(torch.bool)) | |
| tensor = torch.stack(padded_imgs) | |
| mask = torch.stack(padded_masks) | |
| return NestedTensor(tensor, mask=mask) | |
| def setup_for_distributed(is_master): | |
| """ | |
| This function disables printing when not in master process | |
| """ | |
| import builtins as __builtin__ | |
| builtin_print = __builtin__.print | |
| def print(*args, **kwargs): | |
| force = kwargs.pop('force', False) | |
| if is_master or force: | |
| builtin_print(*args, **kwargs) | |
| __builtin__.print = print | |
| def is_dist_avail_and_initialized(): | |
| if not dist.is_available(): | |
| return False | |
| if not dist.is_initialized(): | |
| return False | |
| return True | |
| def get_local_size(): | |
| if not is_dist_avail_and_initialized(): | |
| return 1 | |
| return int(os.environ['LOCAL_SIZE']) | |
| def get_local_rank(): | |
| if not is_dist_avail_and_initialized(): | |
| return 0 | |
| return int(os.environ['LOCAL_RANK']) | |
| def get_world_size(): | |
| if not is_dist_avail_and_initialized(): | |
| return 1 | |
| return dist.get_world_size() | |
| def get_rank(): | |
| if not is_dist_avail_and_initialized(): | |
| return 0 | |
| return dist.get_rank() | |
| def is_main_process(): | |
| return get_rank() == 0 | |
| def save_on_master(*args, **kwargs): | |
| if is_main_process(): | |
| torch.save(*args, **kwargs) | |
| def init_distributed_mode(args): | |
| if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ: | |
| args.rank = int(os.environ["RANK"]) | |
| args.world_size = int(os.environ['WORLD_SIZE']) | |
| args.gpu = int(os.environ['LOCAL_RANK']) | |
| args.dist_url = 'env://' | |
| os.environ['LOCAL_SIZE'] = str(torch.cuda.device_count()) | |
| elif 'SLURM_PROCID' in os.environ: | |
| args.rank = int(os.environ['SLURM_PROCID']) | |
| args.gpu = args.rank % torch.cuda.device_count() | |
| proc_id = int(os.environ['SLURM_PROCID']) | |
| ntasks = int(os.environ['SLURM_NTASKS']) | |
| node_list = os.environ['SLURM_NODELIST'] | |
| num_gpus = torch.cuda.device_count() | |
| addr = subprocess.getoutput( | |
| 'scontrol show hostname {} | head -n1'.format(node_list)) | |
| os.environ['MASTER_PORT'] = os.environ.get('MASTER_PORT', '29500') | |
| os.environ['MASTER_ADDR'] = addr | |
| os.environ['WORLD_SIZE'] = str(ntasks) | |
| os.environ['RANK'] = str(proc_id) | |
| os.environ['LOCAL_RANK'] = str(proc_id % num_gpus) | |
| os.environ['LOCAL_SIZE'] = str(num_gpus) | |
| args.dist_url = 'env://' | |
| args.world_size = ntasks | |
| else: | |
| print('Not using distributed mode') | |
| args.distributed = False | |
| return | |
| args.distributed = True | |
| torch.cuda.set_device(args.gpu) | |
| args.dist_backend = 'nccl' | |
| print('| distributed init (rank {}): {}'.format( | |
| args.rank, args.dist_url), flush=True) | |
| torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url, | |
| world_size=args.world_size, rank=args.rank) | |
| torch.distributed.barrier() | |
| setup_for_distributed(args.rank == 0) | |
| def accuracy(output, target, topk=(1,)): | |
| """Computes the precision@k for the specified values of k""" | |
| if target.numel() == 0: | |
| return [torch.zeros([], device=output.device)] | |
| maxk = max(topk) | |
| batch_size = target.size(0) | |
| _, pred = output.topk(maxk, 1, True, True) | |
| pred = pred.t() | |
| correct = pred.eq(target.view(1, -1).expand_as(pred)) | |
| res = [] | |
| for k in topk: | |
| correct_k = correct[:k].view(-1).float().sum(0) | |
| res.append(correct_k.mul_(100.0 / batch_size)) | |
| return res | |
| def interpolate(input, size=None, scale_factor=None, mode="nearest", align_corners=None): | |
| # type: (Tensor, Optional[List[int]], Optional[float], str, Optional[bool]) -> Tensor | |
| """ | |
| Equivalent to nn.functional.interpolate, but with support for empty batch sizes. | |
| This will eventually be supported natively by PyTorch, and this | |
| class can go away. | |
| """ | |
| if float(torchvision.__version__.split('+')[0][2:]) < 7.0: | |
| if input.numel() > 0: | |
| return torch.nn.functional.interpolate( | |
| input, size, scale_factor, mode, align_corners | |
| ) | |
| output_shape = _output_size(2, input, size, scale_factor) | |
| output_shape = list(input.shape[:-2]) + list(output_shape) | |
| return _new_empty_tensor(input, output_shape) | |
| else: | |
| return torchvision.ops.misc.interpolate(input, size, scale_factor, mode, align_corners) | |
| class NoScaler: | |
| state_dict_key = "no_scaler" | |
| def __call__(self, loss, optimizer, clip_grad=None, parameters=None, create_graph=False): | |
| loss.backward() | |
| if clip_grad is not None and clip_grad > 0: | |
| assert parameters is not None | |
| torch.nn.utils.clip_grad_norm_(parameters, clip_grad) | |
| optimizer.step() | |
| class WarmupLinearDecayLR(_LRScheduler): | |
| def __init__( | |
| self, | |
| optimizer: torch.optim.Optimizer, | |
| warmup_factor: float = 0.001, | |
| warmup_iters: int = 10, | |
| warmup_method: str = "linear", | |
| end_epoch: int = 300, | |
| final_lr_factor: float = 0.003, | |
| last_epoch: int = -1, | |
| ): | |
| """ | |
| Multi Step LR with warmup | |
| Args: | |
| optimizer (torch.optim.Optimizer): optimizer used. | |
| warmup_factor (float): lr = warmup_factor * base_lr | |
| warmup_iters (int): iters to warmup | |
| warmup_method (str): warmup method in ["constant", "linear", "burnin"] | |
| last_epoch(int): The index of last epoch. Default: -1. | |
| """ | |
| self.warmup_factor = warmup_factor | |
| self.warmup_iters = warmup_iters | |
| self.warmup_method = warmup_method | |
| self.end_epoch = end_epoch | |
| assert 0 < final_lr_factor < 1 | |
| self.final_lr_factor = final_lr_factor | |
| super().__init__(optimizer, last_epoch) | |
| def get_lr(self) -> List[float]: | |
| warmup_factor = _get_warmup_factor_at_iter( | |
| self.warmup_method, self.last_epoch, self.warmup_iters, self.warmup_factor) | |
| linear_decay_factor = _get_lr_linear_decay_factor_at_iter( | |
| self.last_epoch, self.warmup_iters, self.end_epoch, self.final_lr_factor) | |
| return [ | |
| base_lr * warmup_factor * linear_decay_factor for base_lr in self.base_lrs | |
| ] | |
| def _get_closed_form_lr(self): | |
| warmup_factor = _get_warmup_factor_at_iter( | |
| self.warmup_method, self.last_epoch, self.warmup_iters, self.warmup_factor) | |
| linear_decay_factor = _get_lr_linear_decay_factor_at_iter( | |
| self.last_epoch, self.warmup_iters, self.end_epoch, self.final_lr_factor) | |
| return [ | |
| base_lr * warmup_factor * linear_decay_factor for base_lr in self.base_lrs | |
| ] | |
| def _get_lr_linear_decay_factor_at_iter(iter: int, start_epoch: int, end_epoch: int, | |
| final_lr_factor: float): | |
| assert iter <= end_epoch | |
| if iter <= start_epoch: | |
| return 1.0 | |
| alpha = (iter - start_epoch) / (end_epoch - start_epoch) | |
| lr_step = final_lr_factor * alpha + 1 - alpha | |
| return lr_step | |
| def _get_warmup_factor_at_iter(method: str, iter: int, warmup_iters: int, | |
| warmup_factor: float) -> float: | |
| """ | |
| Return the learning rate warmup factor at a specific iteration. | |
| See https://arxiv.org/abs/1706.02677 for more details. | |
| Args: | |
| method (str): warmup method; either "constant" or "linear". | |
| iter (int): iteration at which to calculate the warmup factor. | |
| warmup_iters (int): the number of warmup iterations. | |
| warmup_factor (float): the base warmup factor (the meaning changes according | |
| to the method used). | |
| Returns: | |
| float: the effective warmup factor at the given iteration. | |
| """ | |
| if iter >= warmup_iters: | |
| return 1.0 | |
| if method == "constant": | |
| return warmup_factor | |
| elif method == "linear": | |
| alpha = iter / warmup_iters | |
| return warmup_factor * (1 - alpha) + alpha | |
| elif method == "burnin": | |
| return (iter / warmup_iters)**4 | |
| else: | |
| raise ValueError("Unknown warmup method: {}".format(method)) | |