Spaces:
Running
Running
Try to make bokeh plots low-weight with bokeh2html()
Browse files- analyze_winscore.py +9 -0
- app.py +2 -2
- server.py +5 -4
analyze_winscore.py
CHANGED
|
@@ -12,6 +12,15 @@ from bokeh.models import LinearColorMapper, HoverTool
|
|
| 12 |
from bokeh.models import CustomJS
|
| 13 |
from bokeh.palettes import Turbo256 # A color palette with enough colors
|
| 14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
def bokeh2json(obj):
|
| 16 |
from bokeh.document import Document
|
| 17 |
|
|
|
|
| 12 |
from bokeh.models import CustomJS
|
| 13 |
from bokeh.palettes import Turbo256 # A color palette with enough colors
|
| 14 |
|
| 15 |
+
def bokeh2html(obj):
|
| 16 |
+
from bokeh.embed import components
|
| 17 |
+
from bokeh.resources import CDN
|
| 18 |
+
|
| 19 |
+
script, div = components(obj, CDN)
|
| 20 |
+
bokeh_html = f"{CDN.render()}\n{div}\n{script}"
|
| 21 |
+
|
| 22 |
+
return bokeh_html
|
| 23 |
+
|
| 24 |
def bokeh2json(obj):
|
| 25 |
from bokeh.document import Document
|
| 26 |
|
app.py
CHANGED
|
@@ -740,7 +740,7 @@ def gradio_app():
|
|
| 740 |
)
|
| 741 |
|
| 742 |
with gr.Row():
|
| 743 |
-
leaderboard_scatter_plot = gr.
|
| 744 |
value=leaderboard_server.get_leaderboard_scatter_plot(category=leaderboard_server.TASKS_CATEGORY_OVERALL),
|
| 745 |
label='Scatter plot',
|
| 746 |
)
|
|
@@ -748,7 +748,7 @@ def gradio_app():
|
|
| 748 |
gr.Markdown(LEADERBOARD_TAB_BELLOW_SCATTER_PLOT_MARKDOWN)
|
| 749 |
|
| 750 |
with gr.Row():
|
| 751 |
-
leaderboard_heatmap = gr.
|
| 752 |
value=leaderboard_server.get_leaderboard_heatmap(category=leaderboard_server.TASKS_CATEGORY_OVERALL),
|
| 753 |
label='Heatmap',
|
| 754 |
elem_classes="leaderboard-heatmap",
|
|
|
|
| 740 |
)
|
| 741 |
|
| 742 |
with gr.Row():
|
| 743 |
+
leaderboard_scatter_plot = gr.HTML(
|
| 744 |
value=leaderboard_server.get_leaderboard_scatter_plot(category=leaderboard_server.TASKS_CATEGORY_OVERALL),
|
| 745 |
label='Scatter plot',
|
| 746 |
)
|
|
|
|
| 748 |
gr.Markdown(LEADERBOARD_TAB_BELLOW_SCATTER_PLOT_MARKDOWN)
|
| 749 |
|
| 750 |
with gr.Row():
|
| 751 |
+
leaderboard_heatmap = gr.HTML(
|
| 752 |
value=leaderboard_server.get_leaderboard_heatmap(category=leaderboard_server.TASKS_CATEGORY_OVERALL),
|
| 753 |
label='Heatmap',
|
| 754 |
elem_classes="leaderboard-heatmap",
|
server.py
CHANGED
|
@@ -28,6 +28,7 @@ import pandas as pd
|
|
| 28 |
from huggingface_hub import HfApi, snapshot_download
|
| 29 |
|
| 30 |
from compare_significance import SUPPORTED_METRICS
|
|
|
|
| 31 |
|
| 32 |
VISIBLE_METRICS = SUPPORTED_METRICS + ["macro_f1"]
|
| 33 |
|
|
@@ -376,12 +377,12 @@ class LeaderboardServer:
|
|
| 376 |
self.tournament_dataframes_csv = tournament_dataframes_csv
|
| 377 |
|
| 378 |
leaderboard_scatter_plots = {kind_of_p_value: {
|
| 379 |
-
category: self._get_leaderboard_scatter_plot(category=category, kind_of_p_value=kind_of_p_value)
|
| 380 |
for category in categories
|
| 381 |
} for kind_of_p_value in self.KINDS_OF_P_VALUE}
|
| 382 |
|
| 383 |
leaderboard_heatmaps = {kind_of_p_value: {
|
| 384 |
-
category: self._get_leaderboard_heatmap(category=category, kind_of_p_value=kind_of_p_value)
|
| 385 |
for category in categories
|
| 386 |
} for kind_of_p_value in self.KINDS_OF_P_VALUE}
|
| 387 |
|
|
@@ -738,7 +739,7 @@ class LeaderboardServer:
|
|
| 738 |
with self.var_lock.ro:
|
| 739 |
return self.leaderboard_scatter_plots[kind_of_p_value][category]
|
| 740 |
else:
|
| 741 |
-
return self._get_leaderboard_scatter_plot(pre_submit=pre_submit, category=category, kind_of_p_value=kind_of_p_value)
|
| 742 |
|
| 743 |
def _get_leaderboard_scatter_plot(self, pre_submit=None, category=None, kind_of_p_value=None):
|
| 744 |
import numpy as np
|
|
@@ -794,7 +795,7 @@ class LeaderboardServer:
|
|
| 794 |
with self.var_lock.ro:
|
| 795 |
return self.leaderboard_heatmaps[kind_of_p_value][category]
|
| 796 |
else:
|
| 797 |
-
return self._get_leaderboard_heatmap(pre_submit=pre_submit, category=category, kind_of_p_value=kind_of_p_value)
|
| 798 |
|
| 799 |
def _get_leaderboard_heatmap(self, pre_submit=None, category=None, kind_of_p_value=None):
|
| 800 |
from analyze_winscore import get_ldb_records, create_heatmap
|
|
|
|
| 28 |
from huggingface_hub import HfApi, snapshot_download
|
| 29 |
|
| 30 |
from compare_significance import SUPPORTED_METRICS
|
| 31 |
+
from analyze_winscore import bokeh2html
|
| 32 |
|
| 33 |
VISIBLE_METRICS = SUPPORTED_METRICS + ["macro_f1"]
|
| 34 |
|
|
|
|
| 377 |
self.tournament_dataframes_csv = tournament_dataframes_csv
|
| 378 |
|
| 379 |
leaderboard_scatter_plots = {kind_of_p_value: {
|
| 380 |
+
category: bokeh2html(self._get_leaderboard_scatter_plot(category=category, kind_of_p_value=kind_of_p_value))
|
| 381 |
for category in categories
|
| 382 |
} for kind_of_p_value in self.KINDS_OF_P_VALUE}
|
| 383 |
|
| 384 |
leaderboard_heatmaps = {kind_of_p_value: {
|
| 385 |
+
category: bokeh2html(self._get_leaderboard_heatmap(category=category, kind_of_p_value=kind_of_p_value))
|
| 386 |
for category in categories
|
| 387 |
} for kind_of_p_value in self.KINDS_OF_P_VALUE}
|
| 388 |
|
|
|
|
| 739 |
with self.var_lock.ro:
|
| 740 |
return self.leaderboard_scatter_plots[kind_of_p_value][category]
|
| 741 |
else:
|
| 742 |
+
return bokeh2html(self._get_leaderboard_scatter_plot(pre_submit=pre_submit, category=category, kind_of_p_value=kind_of_p_value))
|
| 743 |
|
| 744 |
def _get_leaderboard_scatter_plot(self, pre_submit=None, category=None, kind_of_p_value=None):
|
| 745 |
import numpy as np
|
|
|
|
| 795 |
with self.var_lock.ro:
|
| 796 |
return self.leaderboard_heatmaps[kind_of_p_value][category]
|
| 797 |
else:
|
| 798 |
+
return bokeh2html(self._get_leaderboard_heatmap(pre_submit=pre_submit, category=category, kind_of_p_value=kind_of_p_value))
|
| 799 |
|
| 800 |
def _get_leaderboard_heatmap(self, pre_submit=None, category=None, kind_of_p_value=None):
|
| 801 |
from analyze_winscore import get_ldb_records, create_heatmap
|