Caden Shokat
commited on
Commit
·
90c8b51
1
Parent(s):
adc9d46
data.py + baseline testing
Browse files- src/data.py +13 -0
- src/eval/bert_baseline.py +76 -0
src/data.py
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from datasets import load_dataset
|
| 2 |
+
from transformers import AutoTokenizer
|
| 3 |
+
|
| 4 |
+
def get_tokenizer(model_name="bert-base-uncased", max_len=128):
|
| 5 |
+
token = AutoTokenizer.from_pretrained(model_name)
|
| 6 |
+
token.model_max_length = max_len
|
| 7 |
+
return token
|
| 8 |
+
|
| 9 |
+
def load(tokenizer, split="validation"):
|
| 10 |
+
ds = load_dataset("glue", "stsb", split=split)
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
|
src/eval/bert_baseline.py
ADDED
|
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoModel, AutoTokenizer
|
| 2 |
+
from datasets import load_dataset
|
| 3 |
+
from sklearn.cluster import KMeans
|
| 4 |
+
from torch.nn.functional import normalize
|
| 5 |
+
from scipy.stats import spearmanr
|
| 6 |
+
from sklearn.datasets import fetch_20newsgroups
|
| 7 |
+
import torch
|
| 8 |
+
import numpy as np
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
if hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
|
| 12 |
+
device = torch.device("mps")
|
| 13 |
+
print("Using Apple MPS")
|
| 14 |
+
else:
|
| 15 |
+
device = torch.device("cpu")
|
| 16 |
+
print("Using CPU")
|
| 17 |
+
|
| 18 |
+
def embed_texts(texts, model, tokenizer, device=device):
|
| 19 |
+
ins = tokenizer(texts, padding=True, truncation=True, return_tensors="pt").to(device)
|
| 20 |
+
|
| 21 |
+
with torch.no_grad():
|
| 22 |
+
out = model(**ins).last_hidden_state
|
| 23 |
+
|
| 24 |
+
vecs = out.mean(dim=1)
|
| 25 |
+
return normalize(vecs, dim=-1).cpu().numpy()
|
| 26 |
+
|
| 27 |
+
def spearman_eval(model_name="bert-base-uncased", split="validation"):
|
| 28 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 29 |
+
model = AutoModel.from_pretrained(model_name).eval().to(device)
|
| 30 |
+
ds = load_dataset("glue", "stsb", split=split)
|
| 31 |
+
|
| 32 |
+
sims, gold = [], []
|
| 33 |
+
for ex in ds:
|
| 34 |
+
u = embed_texts([ex["sentence1"]], model, tokenizer)[0]
|
| 35 |
+
v = embed_texts([ex["sentence2"]], model, tokenizer)[0]
|
| 36 |
+
|
| 37 |
+
sims.append(float(np.dot(u, v)))
|
| 38 |
+
gold.append(ex["label"] / 5.0)
|
| 39 |
+
|
| 40 |
+
corr, _ = spearmanr(sims, gold)
|
| 41 |
+
print(f"BERT Baseline Spearman: {corr:.4f}")
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def embed_in_batches(texts, model, tokenizer, batch_size=100):
|
| 45 |
+
all_vecs = []
|
| 46 |
+
for i in range(0, len(texts), batch_size):
|
| 47 |
+
batch = texts[i : i + batch_size]
|
| 48 |
+
vecs = embed_texts(batch, model, tokenizer)
|
| 49 |
+
all_vecs.append(vecs)
|
| 50 |
+
if device.type == "mps":
|
| 51 |
+
torch.mps.empty_cache()
|
| 52 |
+
return np.vstack(all_vecs)
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def clustering_purity(model_name="bert-base-uncased", sample_size=2000, batch_size=100):
|
| 56 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 57 |
+
model = AutoModel.from_pretrained(model_name).eval().to(device)
|
| 58 |
+
|
| 59 |
+
ds = load_dataset("SetFit/20_newsgroups", split="train")
|
| 60 |
+
texts = ds["text"][:sample_size]
|
| 61 |
+
labels = np.array(ds["label"][:sample_size])
|
| 62 |
+
|
| 63 |
+
vecs = embed_in_batches(texts, model, tokenizer, batch_size)
|
| 64 |
+
|
| 65 |
+
clusters = KMeans(n_clusters=len(set(labels)),
|
| 66 |
+
random_state=0).fit_predict(vecs)
|
| 67 |
+
purity = (clusters == labels).sum() / len(labels)
|
| 68 |
+
print(f"Purity (N={sample_size}): {purity:.4f}")
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
if __name__ == "__main__":
|
| 73 |
+
spearman_eval()
|
| 74 |
+
clustering_purity()
|
| 75 |
+
|
| 76 |
+
|