Spaces:
Running
on
Zero
Running
on
Zero
The-Imitation-Game
/
diffusers
/tests
/pipelines
/spectrogram_diffusion
/test_spectrogram_diffusion.py
| # coding=utf-8 | |
| # Copyright 2022 HuggingFace Inc. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import gc | |
| import unittest | |
| import numpy as np | |
| import torch | |
| from diffusers import DDPMScheduler, MidiProcessor, SpectrogramDiffusionPipeline | |
| from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, T5FilmDecoder | |
| from diffusers.utils import require_torch_gpu, skip_mps, slow, torch_device | |
| from diffusers.utils.testing_utils import require_note_seq, require_onnxruntime | |
| from ...pipeline_params import TOKENS_TO_AUDIO_GENERATION_BATCH_PARAMS, TOKENS_TO_AUDIO_GENERATION_PARAMS | |
| from ...test_pipelines_common import PipelineTesterMixin | |
| torch.backends.cuda.matmul.allow_tf32 = False | |
| MIDI_FILE = "./tests/fixtures/elise_format0.mid" | |
| class SpectrogramDiffusionPipelineFastTests(PipelineTesterMixin, unittest.TestCase): | |
| pipeline_class = SpectrogramDiffusionPipeline | |
| required_optional_params = PipelineTesterMixin.required_optional_params - { | |
| "callback", | |
| "latents", | |
| "callback_steps", | |
| "output_type", | |
| "num_images_per_prompt", | |
| } | |
| test_attention_slicing = False | |
| test_cpu_offload = False | |
| batch_params = TOKENS_TO_AUDIO_GENERATION_PARAMS | |
| params = TOKENS_TO_AUDIO_GENERATION_BATCH_PARAMS | |
| def get_dummy_components(self): | |
| torch.manual_seed(0) | |
| notes_encoder = SpectrogramNotesEncoder( | |
| max_length=2048, | |
| vocab_size=1536, | |
| d_model=768, | |
| dropout_rate=0.1, | |
| num_layers=1, | |
| num_heads=1, | |
| d_kv=4, | |
| d_ff=2048, | |
| feed_forward_proj="gated-gelu", | |
| ) | |
| continuous_encoder = SpectrogramContEncoder( | |
| input_dims=128, | |
| targets_context_length=256, | |
| d_model=768, | |
| dropout_rate=0.1, | |
| num_layers=1, | |
| num_heads=1, | |
| d_kv=4, | |
| d_ff=2048, | |
| feed_forward_proj="gated-gelu", | |
| ) | |
| decoder = T5FilmDecoder( | |
| input_dims=128, | |
| targets_length=256, | |
| max_decoder_noise_time=20000.0, | |
| d_model=768, | |
| num_layers=1, | |
| num_heads=1, | |
| d_kv=4, | |
| d_ff=2048, | |
| dropout_rate=0.1, | |
| ) | |
| scheduler = DDPMScheduler() | |
| components = { | |
| "notes_encoder": notes_encoder.eval(), | |
| "continuous_encoder": continuous_encoder.eval(), | |
| "decoder": decoder.eval(), | |
| "scheduler": scheduler, | |
| "melgan": None, | |
| } | |
| return components | |
| def get_dummy_inputs(self, device, seed=0): | |
| if str(device).startswith("mps"): | |
| generator = torch.manual_seed(seed) | |
| else: | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| inputs = { | |
| "input_tokens": [ | |
| [1134, 90, 1135, 1133, 1080, 112, 1132, 1080, 1133, 1079, 133, 1132, 1079, 1133, 1] + [0] * 2033 | |
| ], | |
| "generator": generator, | |
| "num_inference_steps": 4, | |
| "output_type": "mel", | |
| } | |
| return inputs | |
| def test_spectrogram_diffusion(self): | |
| device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
| components = self.get_dummy_components() | |
| pipe = SpectrogramDiffusionPipeline(**components) | |
| pipe = pipe.to(device) | |
| pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(device) | |
| output = pipe(**inputs) | |
| mel = output.audios | |
| mel_slice = mel[0, -3:, -3:] | |
| assert mel_slice.shape == (3, 3) | |
| expected_slice = np.array( | |
| [-11.512925, -4.788215, -0.46172905, -2.051715, -10.539147, -10.970963, -9.091634, 4.0, 4.0] | |
| ) | |
| assert np.abs(mel_slice.flatten() - expected_slice).max() < 1e-2 | |
| def test_save_load_local(self): | |
| return super().test_save_load_local() | |
| def test_dict_tuple_outputs_equivalent(self): | |
| return super().test_dict_tuple_outputs_equivalent() | |
| def test_save_load_optional_components(self): | |
| return super().test_save_load_optional_components() | |
| def test_attention_slicing_forward_pass(self): | |
| return super().test_attention_slicing_forward_pass() | |
| def test_inference_batch_single_identical(self): | |
| pass | |
| def test_inference_batch_consistent(self): | |
| pass | |
| def test_progress_bar(self): | |
| return super().test_progress_bar() | |
| class PipelineIntegrationTests(unittest.TestCase): | |
| def tearDown(self): | |
| # clean up the VRAM after each test | |
| super().tearDown() | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| def test_callback(self): | |
| # TODO - test that pipeline can decode tokens in a callback | |
| # so that music can be played live | |
| device = torch_device | |
| pipe = SpectrogramDiffusionPipeline.from_pretrained("google/music-spectrogram-diffusion") | |
| melgan = pipe.melgan | |
| pipe.melgan = None | |
| pipe = pipe.to(device) | |
| pipe.set_progress_bar_config(disable=None) | |
| def callback(step, mel_output): | |
| # decode mel to audio | |
| audio = melgan(input_features=mel_output.astype(np.float32))[0] | |
| assert len(audio[0]) == 81920 * (step + 1) | |
| # simulate that audio is played | |
| return audio | |
| processor = MidiProcessor() | |
| input_tokens = processor(MIDI_FILE) | |
| input_tokens = input_tokens[:3] | |
| generator = torch.manual_seed(0) | |
| pipe(input_tokens, num_inference_steps=5, generator=generator, callback=callback, output_type="mel") | |
| def test_spectrogram_fast(self): | |
| device = torch_device | |
| pipe = SpectrogramDiffusionPipeline.from_pretrained("google/music-spectrogram-diffusion") | |
| pipe = pipe.to(device) | |
| pipe.set_progress_bar_config(disable=None) | |
| processor = MidiProcessor() | |
| input_tokens = processor(MIDI_FILE) | |
| # just run two denoising loops | |
| input_tokens = input_tokens[:2] | |
| generator = torch.manual_seed(0) | |
| output = pipe(input_tokens, num_inference_steps=2, generator=generator) | |
| audio = output.audios[0] | |
| assert abs(np.abs(audio).sum() - 3612.841) < 1e-1 | |
| def test_spectrogram(self): | |
| device = torch_device | |
| pipe = SpectrogramDiffusionPipeline.from_pretrained("google/music-spectrogram-diffusion") | |
| pipe = pipe.to(device) | |
| pipe.set_progress_bar_config(disable=None) | |
| processor = MidiProcessor() | |
| input_tokens = processor(MIDI_FILE) | |
| # just run 4 denoising loops | |
| input_tokens = input_tokens[:4] | |
| generator = torch.manual_seed(0) | |
| output = pipe(input_tokens, num_inference_steps=100, generator=generator) | |
| audio = output.audios[0] | |
| assert abs(np.abs(audio).sum() - 9389.1111) < 5e-2 | |