File size: 20,093 Bytes
00613e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
import math
from typing import List, Tuple

import torch
import torchvision.transforms as T
from PIL import Image, ImageOps
from transformers import AutoProcessor, BatchFeature, LlamaTokenizerFast
from transformers.processing_utils import ProcessorMixin
from config import IMAGE_SIZE, BASE_SIZE, CROP_MODE, MIN_CROPS, MAX_CROPS, PROMPT, TOKENIZER

def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
    best_ratio_diff = float('inf')
    best_ratio = (1, 1)
    area = width * height
    for ratio in target_ratios:
        target_aspect_ratio = ratio[0] / ratio[1]
        ratio_diff = abs(aspect_ratio - target_aspect_ratio)
        if ratio_diff < best_ratio_diff:
            best_ratio_diff = ratio_diff
            best_ratio = ratio
        elif ratio_diff == best_ratio_diff:
            if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
                best_ratio = ratio
    # print(f'width: {width}, height: {height}, best_ratio: {best_ratio}')
    return best_ratio


def count_tiles(orig_width, orig_height, min_num=MIN_CROPS, max_num=MAX_CROPS, image_size=640, use_thumbnail=False):
    aspect_ratio = orig_width / orig_height

    # calculate the existing image aspect ratio
    target_ratios = set(
        (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
        i * j <= max_num and i * j >= min_num)
    # print(target_ratios)
    target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])

    # find the closest aspect ratio to the target
    target_aspect_ratio = find_closest_aspect_ratio(
        aspect_ratio, target_ratios, orig_width, orig_height, image_size)

    return target_aspect_ratio


def dynamic_preprocess(image, min_num=MIN_CROPS, max_num=MAX_CROPS, image_size=640, use_thumbnail=False):
    orig_width, orig_height = image.size
    aspect_ratio = orig_width / orig_height

    # calculate the existing image aspect ratio
    target_ratios = set(
        (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
        i * j <= max_num and i * j >= min_num)
    # print(target_ratios)
    target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])

    # find the closest aspect ratio to the target
    target_aspect_ratio = find_closest_aspect_ratio(
        aspect_ratio, target_ratios, orig_width, orig_height, image_size)

    # print(target_aspect_ratio)
    # calculate the target width and height
    target_width = image_size * target_aspect_ratio[0]
    target_height = image_size * target_aspect_ratio[1]
    blocks = target_aspect_ratio[0] * target_aspect_ratio[1]

    # resize the image
    resized_img = image.resize((target_width, target_height))
    processed_images = []
    for i in range(blocks):
        box = (
            (i % (target_width // image_size)) * image_size,
            (i // (target_width // image_size)) * image_size,
            ((i % (target_width // image_size)) + 1) * image_size,
            ((i // (target_width // image_size)) + 1) * image_size
        )
        # split the image
        split_img = resized_img.crop(box)
        processed_images.append(split_img)
    assert len(processed_images) == blocks
    if use_thumbnail and len(processed_images) != 1:
        thumbnail_img = image.resize((image_size, image_size))
        processed_images.append(thumbnail_img)
    return processed_images, target_aspect_ratio





class ImageTransform:

    def __init__(self,
                 mean: Tuple[float, float, float] = (0.5, 0.5, 0.5),
                 std: Tuple[float, float, float] = (0.5, 0.5, 0.5),
                 normalize: bool = True):
        self.mean = mean
        self.std = std
        self.normalize = normalize

        transform_pipelines = [T.ToTensor()]

        if normalize:
            transform_pipelines.append(T.Normalize(mean, std))

        self.transform = T.Compose(transform_pipelines)

    def __call__(self, pil_img: Image.Image):
        x = self.transform(pil_img)
        return x


class DeepseekOCRProcessor(ProcessorMixin):
    tokenizer_class = ("LlamaTokenizer", "LlamaTokenizerFast")
    attributes = ["tokenizer"]

    def __init__(
        self,
        tokenizer: LlamaTokenizerFast = TOKENIZER,
        candidate_resolutions: Tuple[Tuple[int, int]] = [[1024, 1024]],
        patch_size: int = 16,
        downsample_ratio: int = 4,
        image_mean: Tuple[float, float, float] = (0.5, 0.5, 0.5),
        image_std: Tuple[float, float, float] = (0.5, 0.5, 0.5),
        normalize: bool = True,
        image_token: str = "<image>",
        pad_token: str = "<|▁pad▁|>",
        add_special_token: bool = False,
        sft_format: str = "deepseek",
        mask_prompt: bool = True,
        ignore_id: int = -100,
        **kwargs,
    ):

        # self.candidate_resolutions = candidate_resolutions # placeholder no use
        self.image_size = IMAGE_SIZE
        self.base_size = BASE_SIZE
        # self.patch_size = patch_size
        self.patch_size = 16 
        self.image_mean = image_mean
        self.image_std = image_std
        self.normalize = normalize
        # self.downsample_ratio = downsample_ratio
        self.downsample_ratio = 4

        self.image_transform = ImageTransform(mean=image_mean, std=image_std, normalize=normalize)


        self.tokenizer = tokenizer
        # self.tokenizer = add_special_token(tokenizer)
        self.tokenizer.padding_side = 'left'  # must set this,padding side with make a difference in batch inference

        # add the pad_token as special token to use 'tokenizer.pad_token' and 'tokenizer.pad_token_id'
        if self.tokenizer.pad_token is None:
            self.tokenizer.add_special_tokens({'pad_token': pad_token})

        # add image token
        # image_token_id = self.tokenizer.vocab.get(image_token)
        # if image_token_id is None:
        #     special_tokens = [image_token]
        #     special_tokens_dict = {"additional_special_tokens": special_tokens}
        #     self.tokenizer.add_special_tokens(special_tokens_dict)
        self.image_token_id = self.tokenizer.vocab.get(image_token)

        # add five special tokens for grounding-related tasks
        # <|ref|>, <|/ref|>, <|det|>, <|/det|>, <|grounding|>
        # special_tokens = ['<|ref|>', '<|/ref|>', '<|det|>', '<|/det|>', '<|grounding|>']
        # special_tokens_dict = {"additional_special_tokens": special_tokens}

        # special_tokens = ['<image>','<|ref|>', '<|/ref|>', '<|det|>', '<|/det|>', '<|grounding|>', '<td>', '</td>', '<tr>', '</tr>']
        # special_tokens_dict = {"additional_special_tokens": special_tokens}
        # self.tokenizer.add_special_tokens(special_tokens_dict)

        # # add special tokens for SFT data
        # special_tokens = ["<|User|>", "<|Assistant|>"]
        # special_tokens_dict = {"additional_special_tokens": special_tokens}
        # self.tokenizer.add_special_tokens(special_tokens_dict)

        self.image_token = image_token
        self.pad_token = pad_token
        self.add_special_token = add_special_token
        self.sft_format = sft_format
        self.mask_prompt = mask_prompt
        self.ignore_id = ignore_id

        super().__init__(
            tokenizer,
            **kwargs,
        )


    

    # def select_best_resolution(self, image_size):
    #     # used for cropping
    #     original_width, original_height = image_size
    #     best_fit = None
    #     max_effective_resolution = 0
    #     min_wasted_resolution = float("inf")

    #     for width, height in self.candidate_resolutions:
    #         scale = min(width / original_width, height / original_height)
    #         downscaled_width, downscaled_height = int(
    #             original_width * scale), int(original_height * scale)
    #         effective_resolution = min(downscaled_width * downscaled_height,
    #                                    original_width * original_height)
    #         wasted_resolution = (width * height) - effective_resolution

    #         if effective_resolution > max_effective_resolution or (
    #                 effective_resolution == max_effective_resolution
    #                 and wasted_resolution < min_wasted_resolution):
    #             max_effective_resolution = effective_resolution
    #             min_wasted_resolution = wasted_resolution
    #             best_fit = (width, height)

    #     return best_fit

    @property
    def bos_id(self):
        return self.tokenizer.bos_token_id

    @property
    def eos_id(self):
        return self.tokenizer.eos_token_id

    @property
    def pad_id(self):
        return self.tokenizer.pad_token_id

    def encode(self, text: str, bos: bool = True, eos: bool = False):
        t = self.tokenizer.encode(text, add_special_tokens=False)

        if bos:
            t = [self.bos_id] + t
        if eos:
            t = t + [self.eos_id]

        return t

    def decode(self, t: List[int], **kwargs) -> str:
        return self.tokenizer.decode(t, **kwargs)

    def process_one(
        self,
        prompt: str,
        images: List,
        inference_mode: bool = True,
        **kwargs,
    ):
        """

        Args:
            prompt (str): the formatted prompt;
            conversations (List[Dict]): conversations with a list of messages;
            images (List[ImageType]): the list of images;
            inference_mode (bool): if True, then remove the last eos token;
            system_prompt (str): the system prompt;
            **kwargs:

        Returns:
            outputs (BaseProcessorOutput): the output of the processor,
                - input_ids (torch.LongTensor): [N + image tokens]
                - target_ids (torch.LongTensor): [N + image tokens]
                - pixel_values (torch.FloatTensor): [n_patches, 3, H, W]
                - image_id (int): the id of the image token
                - num_image_tokens (List[int]): the number of image tokens
        """

        assert (prompt is not None and images is not None
                ), "prompt and images must be used at the same time."

        sft_format = prompt

        input_ids, pixel_values, images_crop, images_seq_mask, images_spatial_crop, num_image_tokens, _ = images[0]


        return {
            "input_ids": input_ids,
            "pixel_values": pixel_values,
            "images_crop": images_crop,
            "images_seq_mask": images_seq_mask,
            "images_spatial_crop": images_spatial_crop,
            "num_image_tokens": num_image_tokens,
        }


        # prepare = BatchFeature(
        #     data=dict(
        #         input_ids=input_ids,
        #         pixel_values=pixel_values,
        #         images_crop = images_crop,
        #         images_seq_mask=images_seq_mask,
        #         images_spatial_crop=images_spatial_crop,
        #         num_image_tokens=num_image_tokens,
        #     ),
        #     tensor_type="pt",
        # )
        # return prepare

    def __call__(
        self,
        *,
        prompt: str,
        images: List,
        inference_mode: bool = True,
        **kwargs,
    ):
        """

        Args:
            prompt (str): the formatted prompt;
            images (List[ImageType]): the list of images;
            inference_mode (bool): if True, then remove the last eos token;
            **kwargs:

        Returns:
            outputs (BaseProcessorOutput): the output of the processor,
                - input_ids (torch.LongTensor): [N + image tokens]
                - images (torch.FloatTensor): [n_images, 3, H, W]
                - image_id (int): the id of the image token
                - num_image_tokens (List[int]): the number of image tokens
        """

        prepare = self.process_one(
            prompt=prompt,
            images=images,
            inference_mode=inference_mode,
        )

        return prepare

    def tokenize_with_images(
        self,
        # conversation: str,
        images: List[Image.Image],
        bos: bool = True,
        eos: bool = True,
        cropping: bool = True,
    ):
        """Tokenize text with <image> tags."""

        # print(conversation)
        conversation = PROMPT
        assert conversation.count(self.image_token) == len(images)
        text_splits = conversation.split(self.image_token)
        images_list, images_crop_list, images_seq_mask, images_spatial_crop = [], [], [], []
        image_shapes = []
        num_image_tokens = []
        tokenized_str = []
        # print('image: ', len(images))
        for text_sep, image in zip(text_splits, images):
            """encode text_sep"""
            tokenized_sep = self.encode(text_sep, bos=False, eos=False)
            tokenized_str += tokenized_sep
            images_seq_mask += [False] * len(tokenized_sep)

            """select best resolution for anyres"""
            # if cropping:
            #     best_width, best_height = self.select_best_resolution(image.size)
            # else:
            #     best_width, best_height = self.image_size, self.image_size

            image_shapes.append(image.size)

            if image.size[0] <= 640 and image.size[1] <= 640:
                crop_ratio = [1, 1]
            else:
                if cropping:
                    # print('image-size: ', image.size)
                    # best_width, best_height = select_best_resolution(image.size, self.candidate_resolutions)
                    # print('image ', image.size)
                    # print('open_size:', image.size)
                    images_crop_raw, crop_ratio = dynamic_preprocess(image, image_size=IMAGE_SIZE)
                    # print('crop_ratio: ', crop_ratio)
                else:
                    # best_width, best_height = self.image_size, self.image_size
                    crop_ratio = [1, 1]
            # print(image.size, (best_width, best_height)) # check the select_best_resolutions func

            # print(crop_ratio)
            """process the global view"""

            # if cropping
            if self.image_size <= 640 and not cropping:
                # print('directly resize')
                image = image.resize((self.image_size, self.image_size))

            global_view = ImageOps.pad(image, (self.base_size, self.base_size),
                                    color=tuple(int(x * 255) for x in self.image_transform.mean))
            images_list.append(self.image_transform(global_view))

            """record height / width crop num"""
            # width_crop_num, height_crop_num = best_width // self.image_size, best_height // self.image_size
            num_width_tiles, num_height_tiles = crop_ratio
            images_spatial_crop.append([num_width_tiles, num_height_tiles])




            if num_width_tiles > 1 or num_height_tiles > 1:
                """process the local views"""
                # local_view = ImageOps.pad(image, (best_width, best_height),
                #                         color=tuple(int(x * 255) for x in self.image_transform.mean))
                # for i in range(0, best_height, self.image_size):
                #     for j in range(0, best_width, self.image_size):
                #         images_crop_list.append(
                #             self.image_transform(local_view.crop((j, i, j + self.image_size, i + self.image_size))))
                for i in range(len(images_crop_raw)):
                    images_crop_list.append(self.image_transform(images_crop_raw[i]))

            # """process the global view"""
            # global_view = ImageOps.pad(image, (self.image_size, self.image_size),
            #                            color=tuple(int(x * 255) for x in self.image_transform.mean))
            # images_list.append(self.image_transform(global_view))

            # """process the local views"""
            # local_view = ImageOps.pad(image, (best_width, best_height),
            #                           color=tuple(int(x * 255) for x in self.image_transform.mean))
            # for i in range(0, best_height, self.image_size):
            #     for j in range(0, best_width, self.image_size):
            #         images_list.append(
            #             self.image_transform(local_view.crop((j, i, j + self.image_size, i + self.image_size))))

            # """add image tokens"""
            """add image tokens"""
            num_queries = math.ceil((self.image_size // self.patch_size) / self.downsample_ratio)
            num_queries_base = math.ceil((self.base_size // self.patch_size) / self.downsample_ratio)


            tokenized_image = ([self.image_token_id] * num_queries_base + [self.image_token_id]) * num_queries_base
            tokenized_image += [self.image_token_id]
            if num_width_tiles > 1 or num_height_tiles > 1:
                tokenized_image += ([self.image_token_id] * (num_queries * num_width_tiles) + [self.image_token_id]) * (
                            num_queries * num_height_tiles)
            tokenized_str += tokenized_image
            images_seq_mask += [True] * len(tokenized_image)
            num_image_tokens.append(len(tokenized_image))

        """process the last text split"""
        tokenized_sep = self.encode(text_splits[-1], bos=False, eos=False)
        tokenized_str += tokenized_sep
        images_seq_mask += [False] * len(tokenized_sep)

        """add the bos and eos tokens"""
        if bos:
            tokenized_str = [self.bos_id] + tokenized_str
            images_seq_mask = [False] + images_seq_mask
        if eos:
            tokenized_str = tokenized_str + [self.eos_id]
            images_seq_mask = images_seq_mask + [False]

        assert len(tokenized_str) == len(
            images_seq_mask), f"tokenize_with_images func: tokenized_str's length {len(tokenized_str)} is not equal to imags_seq_mask's length {len(images_seq_mask)}"
        


        masked_tokenized_str = []
        for token_index in tokenized_str:
            if token_index != self.image_token_id:
                masked_tokenized_str.append(token_index)
            else:
                masked_tokenized_str.append(self.ignore_id)

        assert len(tokenized_str) == len(images_seq_mask) == len(masked_tokenized_str), \
            (f"tokenized_str's length {len(tokenized_str)}, input_ids' length {len(masked_tokenized_str)}, "
             f"imags_seq_mask's length {len(images_seq_mask)}, are not equal")

        input_ids = torch.LongTensor(tokenized_str)
        target_ids = torch.LongTensor(masked_tokenized_str)
        images_seq_mask = torch.tensor(images_seq_mask, dtype=torch.bool)

        # set input_ids < 0 | input_ids == self.image_token_id as ignore_id
        target_ids[(input_ids < 0) |
                   (input_ids == self.image_token_id)] = self.ignore_id
        input_ids[input_ids < 0] = self.pad_id

        inference_mode = True

        if inference_mode:
            # Remove the ending eos token
            assert input_ids[-1] == self.eos_id
            input_ids = input_ids[:-1]
            target_ids = target_ids[:-1]
            images_seq_mask = images_seq_mask[:-1]

        if len(images_list) == 0:
            pixel_values = torch.zeros((1, 3, self.base_size, self.base_size))
            images_spatial_crop = torch.zeros((1, 1), dtype=torch.long)
            images_crop = torch.zeros((1, 3, self.image_size, self.image_size)).unsqueeze(0)
        else:
            pixel_values = torch.stack(images_list, dim=0)
            images_spatial_crop = torch.tensor(images_spatial_crop, dtype=torch.long)
            if images_crop_list:
                images_crop = torch.stack(images_crop_list, dim=0).unsqueeze(0)
            else:
                images_crop = torch.zeros((1, 3, self.image_size, self.image_size)).unsqueeze(0)

        input_ids = input_ids.unsqueeze(0)

        
        return [[input_ids, pixel_values, images_crop, images_seq_mask, images_spatial_crop, num_image_tokens, image_shapes]]


AutoProcessor.register("DeepseekVLV2Processor", DeepseekOCRProcessor)