Spaces:
				
			
			
	
			
			
					
		Running
		
	
	
	
			
			
	
	
	
	
		
		
					
		Running
		
	File size: 9,765 Bytes
			
			| 00613e2 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 | import asyncio
import re
import os
import torch
if torch.version.cuda == '11.8':
    os.environ["TRITON_PTXAS_PATH"] = "/usr/local/cuda-11.8/bin/ptxas"
os.environ['VLLM_USE_V1'] = '0'
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
from vllm import AsyncLLMEngine, SamplingParams
from vllm.engine.arg_utils import AsyncEngineArgs
from vllm.model_executor.models.registry import ModelRegistry
import time
from deepseek_ocr import DeepseekOCRForCausalLM
from PIL import Image, ImageDraw, ImageFont, ImageOps
import numpy as np
from tqdm import tqdm
from process.ngram_norepeat import NoRepeatNGramLogitsProcessor
from process.image_process import DeepseekOCRProcessor
from config import MODEL_PATH, INPUT_PATH, OUTPUT_PATH, PROMPT, CROP_MODE
ModelRegistry.register_model("DeepseekOCRForCausalLM", DeepseekOCRForCausalLM)
def load_image(image_path):
    try:
        image = Image.open(image_path)
        
        corrected_image = ImageOps.exif_transpose(image)
        return corrected_image
        
    except Exception as e:
        print(f"error: {e}")
        try:
            return Image.open(image_path)
        except:
            return None
def re_match(text):
    pattern = r'(<\|ref\|>(.*?)<\|/ref\|><\|det\|>(.*?)<\|/det\|>)'
    matches = re.findall(pattern, text, re.DOTALL)
    mathes_image = []
    mathes_other = []
    for a_match in matches:
        if '<|ref|>image<|/ref|>' in a_match[0]:
            mathes_image.append(a_match[0])
        else:
            mathes_other.append(a_match[0])
    return matches, mathes_image, mathes_other
def extract_coordinates_and_label(ref_text, image_width, image_height):
    try:
        label_type = ref_text[1]
        cor_list = eval(ref_text[2])
    except Exception as e:
        print(e)
        return None
    return (label_type, cor_list)
def draw_bounding_boxes(image, refs):
    image_width, image_height = image.size
    img_draw = image.copy()
    draw = ImageDraw.Draw(img_draw)
    overlay = Image.new('RGBA', img_draw.size, (0, 0, 0, 0))
    draw2 = ImageDraw.Draw(overlay)
    
    #     except IOError:
    font = ImageFont.load_default()
    img_idx = 0
    
    for i, ref in enumerate(refs):
        try:
            result = extract_coordinates_and_label(ref, image_width, image_height)
            if result:
                label_type, points_list = result
                
                color = (np.random.randint(0, 200), np.random.randint(0, 200), np.random.randint(0, 255))
                color_a = color + (20, )
                for points in points_list:
                    x1, y1, x2, y2 = points
                    x1 = int(x1 / 999 * image_width)
                    y1 = int(y1 / 999 * image_height)
                    x2 = int(x2 / 999 * image_width)
                    y2 = int(y2 / 999 * image_height)
                    if label_type == 'image':
                        try:
                            cropped = image.crop((x1, y1, x2, y2))
                            cropped.save(f"{OUTPUT_PATH}/images/{img_idx}.jpg")
                        except Exception as e:
                            print(e)
                            pass
                        img_idx += 1
                        
                    try:
                        if label_type == 'title':
                            draw.rectangle([x1, y1, x2, y2], outline=color, width=4)
                            draw2.rectangle([x1, y1, x2, y2], fill=color_a, outline=(0, 0, 0, 0), width=1)
                        else:
                            draw.rectangle([x1, y1, x2, y2], outline=color, width=2)
                            draw2.rectangle([x1, y1, x2, y2], fill=color_a, outline=(0, 0, 0, 0), width=1)
                        text_x = x1
                        text_y = max(0, y1 - 15)
                            
                        text_bbox = draw.textbbox((0, 0), label_type, font=font)
                        text_width = text_bbox[2] - text_bbox[0]
                        text_height = text_bbox[3] - text_bbox[1]
                        draw.rectangle([text_x, text_y, text_x + text_width, text_y + text_height], 
                                    fill=(255, 255, 255, 30))
                        
                        draw.text((text_x, text_y), label_type, font=font, fill=color)
                    except:
                        pass
        except:
            continue
    img_draw.paste(overlay, (0, 0), overlay)
    return img_draw
def process_image_with_refs(image, ref_texts):
    result_image = draw_bounding_boxes(image, ref_texts)
    return result_image
async def stream_generate(image=None, prompt=''):
    engine_args = AsyncEngineArgs(
        model=MODEL_PATH,
        hf_overrides={"architectures": ["DeepseekOCRForCausalLM"]},
        block_size=256,
        max_model_len=8192,
        enforce_eager=False,
        trust_remote_code=True,  
        tensor_parallel_size=1,
        gpu_memory_utilization=0.75,
    )
    engine = AsyncLLMEngine.from_engine_args(engine_args)
    
    logits_processors = [NoRepeatNGramLogitsProcessor(ngram_size=30, window_size=90, whitelist_token_ids= {128821, 128822})] #whitelist: <td>, </td> 
    sampling_params = SamplingParams(
        temperature=0.0,
        max_tokens=8192,
        logits_processors=logits_processors,
        skip_special_tokens=False,
        # ignore_eos=False,
        
    )
    
    request_id = f"request-{int(time.time())}"
    printed_length = 0  
    if image and '<image>' in prompt:
        request = {
            "prompt": prompt,
            "multi_modal_data": {"image": image}
        }
    elif prompt:
        request = {
            "prompt": prompt
        }
    else:
        assert False, f'prompt is none!!!'
    async for request_output in engine.generate(
        request, sampling_params, request_id
    ):
        if request_output.outputs:
            full_text = request_output.outputs[0].text
            new_text = full_text[printed_length:]
            print(new_text, end='', flush=True)
            printed_length = len(full_text)
            final_output = full_text
    print('\n') 
    return final_output
if __name__ == "__main__":
    os.makedirs(OUTPUT_PATH, exist_ok=True)
    os.makedirs(f'{OUTPUT_PATH}/images', exist_ok=True)
    image = load_image(INPUT_PATH).convert('RGB')
    
    if '<image>' in PROMPT:
        image_features = DeepseekOCRProcessor().tokenize_with_images(images = [image], bos=True, eos=True, cropping=CROP_MODE)
    else:
        image_features = ''
    prompt = PROMPT
    result_out = asyncio.run(stream_generate(image_features, prompt))
    save_results = 1
    if save_results and '<image>' in prompt:
        print('='*15 + 'save results:' + '='*15)
        image_draw = image.copy()
        outputs = result_out
        with open(f'{OUTPUT_PATH}/result_ori.mmd', 'w', encoding = 'utf-8') as afile:
            afile.write(outputs)
        matches_ref, matches_images, mathes_other = re_match(outputs)
        # print(matches_ref)
        result = process_image_with_refs(image_draw, matches_ref)
        for idx, a_match_image in enumerate(tqdm(matches_images, desc="image")):
            outputs = outputs.replace(a_match_image, f' + '.jpg)\n')
        for idx, a_match_other in enumerate(tqdm(mathes_other, desc="other")):
            outputs = outputs.replace(a_match_other, '').replace('\\coloneqq', ':=').replace('\\eqqcolon', '=:')
        # if 'structural formula' in conversation[0]['content']:
        #     outputs = '<smiles>' + outputs + '</smiles>'
        with open(f'{OUTPUT_PATH}/result.mmd', 'w', encoding = 'utf-8') as afile:
            afile.write(outputs)
        if 'line_type' in outputs:
            import matplotlib.pyplot as plt
            from matplotlib.patches import Circle
            lines = eval(outputs)['Line']['line']
            line_type = eval(outputs)['Line']['line_type']
            # print(lines)
            endpoints = eval(outputs)['Line']['line_endpoint']
            fig, ax = plt.subplots(figsize=(3,3), dpi=200)
            ax.set_xlim(-15, 15)
            ax.set_ylim(-15, 15)
            for idx, line in enumerate(lines):
                try:
                    p0 = eval(line.split(' -- ')[0])
                    p1 = eval(line.split(' -- ')[-1])
                    if line_type[idx] == '--':
                        ax.plot([p0[0], p1[0]], [p0[1], p1[1]], linewidth=0.8, color='k')
                    else:
                        ax.plot([p0[0], p1[0]], [p0[1], p1[1]], linewidth = 0.8, color = 'k')
                    ax.scatter(p0[0], p0[1], s=5, color = 'k')
                    ax.scatter(p1[0], p1[1], s=5, color = 'k')
                except:
                    pass
            for endpoint in endpoints:
                label = endpoint.split(': ')[0]
                (x, y) = eval(endpoint.split(': ')[1])
                ax.annotate(label, (x, y), xytext=(1, 1), textcoords='offset points', 
                            fontsize=5, fontweight='light')
            
            try:
                if 'Circle' in eval(outputs).keys():
                    circle_centers = eval(outputs)['Circle']['circle_center']
                    radius = eval(outputs)['Circle']['radius']
                    for center, r in zip(circle_centers, radius):
                        center = eval(center.split(': ')[1])
                        circle = Circle(center, radius=r, fill=False, edgecolor='black', linewidth=0.8)
                        ax.add_patch(circle)
            except:
                pass
            plt.savefig(f'{OUTPUT_PATH}/geo.jpg')
            plt.close()
        result.save(f'{OUTPUT_PATH}/result_with_boxes.jpg')
 |