CassianK's picture
Upload 12 files
00613e2 verified
import os
import re
from tqdm import tqdm
import torch
if torch.version.cuda == '11.8':
os.environ["TRITON_PTXAS_PATH"] = "/usr/local/cuda-11.8/bin/ptxas"
os.environ['VLLM_USE_V1'] = '0'
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
from config import MODEL_PATH, INPUT_PATH, OUTPUT_PATH, PROMPT, MAX_CONCURRENCY, CROP_MODE, NUM_WORKERS
from concurrent.futures import ThreadPoolExecutor
import glob
from PIL import Image
from deepseek_ocr import DeepseekOCRForCausalLM
from vllm.model_executor.models.registry import ModelRegistry
from vllm import LLM, SamplingParams
from process.ngram_norepeat import NoRepeatNGramLogitsProcessor
from process.image_process import DeepseekOCRProcessor
ModelRegistry.register_model("DeepseekOCRForCausalLM", DeepseekOCRForCausalLM)
llm = LLM(
model=MODEL_PATH,
hf_overrides={"architectures": ["DeepseekOCRForCausalLM"]},
block_size=256,
enforce_eager=False,
trust_remote_code=True,
max_model_len=8192,
swap_space=0,
max_num_seqs = MAX_CONCURRENCY,
tensor_parallel_size=1,
gpu_memory_utilization=0.9,
)
logits_processors = [NoRepeatNGramLogitsProcessor(ngram_size=40, window_size=90, whitelist_token_ids= {128821, 128822})] #window for fast;whitelist_token_ids: <td>,</td>
sampling_params = SamplingParams(
temperature=0.0,
max_tokens=8192,
logits_processors=logits_processors,
skip_special_tokens=False,
)
class Colors:
RED = '\033[31m'
GREEN = '\033[32m'
YELLOW = '\033[33m'
BLUE = '\033[34m'
RESET = '\033[0m'
def clean_formula(text):
formula_pattern = r'\\\[(.*?)\\\]'
def process_formula(match):
formula = match.group(1)
formula = re.sub(r'\\quad\s*\([^)]*\)', '', formula)
formula = formula.strip()
return r'\[' + formula + r'\]'
cleaned_text = re.sub(formula_pattern, process_formula, text)
return cleaned_text
def re_match(text):
pattern = r'(<\|ref\|>(.*?)<\|/ref\|><\|det\|>(.*?)<\|/det\|>)'
matches = re.findall(pattern, text, re.DOTALL)
# mathes_image = []
mathes_other = []
for a_match in matches:
mathes_other.append(a_match[0])
return matches, mathes_other
def process_single_image(image):
"""single image"""
prompt_in = prompt
cache_item = {
"prompt": prompt_in,
"multi_modal_data": {"image": DeepseekOCRProcessor().tokenize_with_images(images = [image], bos=True, eos=True, cropping=CROP_MODE)},
}
return cache_item
if __name__ == "__main__":
# INPUT_PATH = OmniDocBench images path
os.makedirs(OUTPUT_PATH, exist_ok=True)
# print('image processing until processing prompts.....')
print(f'{Colors.RED}glob images.....{Colors.RESET}')
images_path = glob.glob(f'{INPUT_PATH}/*')
images = []
for image_path in images_path:
image = Image.open(image_path).convert('RGB')
images.append(image)
prompt = PROMPT
# batch_inputs = []
# for image in tqdm(images):
# prompt_in = prompt
# cache_list = [
# {
# "prompt": prompt_in,
# "multi_modal_data": {"image": Image.open(image).convert('RGB')},
# }
# ]
# batch_inputs.extend(cache_list)
with ThreadPoolExecutor(max_workers=NUM_WORKERS) as executor:
batch_inputs = list(tqdm(
executor.map(process_single_image, images),
total=len(images),
desc="Pre-processed images"
))
outputs_list = llm.generate(
batch_inputs,
sampling_params=sampling_params
)
output_path = OUTPUT_PATH
os.makedirs(output_path, exist_ok=True)
for output, image in zip(outputs_list, images_path):
content = output.outputs[0].text
mmd_det_path = output_path + image.split('/')[-1].replace('.jpg', '_det.md')
with open(mmd_det_path, 'w', encoding='utf-8') as afile:
afile.write(content)
content = clean_formula(content)
matches_ref, mathes_other = re_match(content)
for idx, a_match_other in enumerate(tqdm(mathes_other, desc="other")):
content = content.replace(a_match_other, '').replace('\n\n\n\n', '\n\n').replace('\n\n\n', '\n\n').replace('<center>', '').replace('</center>', '')
mmd_path = output_path + image.split('/')[-1].replace('.jpg', '.md')
with open(mmd_path, 'w', encoding='utf-8') as afile:
afile.write(content)