import math from typing import List, Tuple import torch import torchvision.transforms as T from PIL import Image, ImageOps from transformers import AutoProcessor, BatchFeature, LlamaTokenizerFast from transformers.processing_utils import ProcessorMixin from config import IMAGE_SIZE, BASE_SIZE, CROP_MODE, MIN_CROPS, MAX_CROPS, PROMPT, TOKENIZER def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): best_ratio_diff = float('inf') best_ratio = (1, 1) area = width * height for ratio in target_ratios: target_aspect_ratio = ratio[0] / ratio[1] ratio_diff = abs(aspect_ratio - target_aspect_ratio) if ratio_diff < best_ratio_diff: best_ratio_diff = ratio_diff best_ratio = ratio elif ratio_diff == best_ratio_diff: if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: best_ratio = ratio # print(f'width: {width}, height: {height}, best_ratio: {best_ratio}') return best_ratio def count_tiles(orig_width, orig_height, min_num=MIN_CROPS, max_num=MAX_CROPS, image_size=640, use_thumbnail=False): aspect_ratio = orig_width / orig_height # calculate the existing image aspect ratio target_ratios = set( (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if i * j <= max_num and i * j >= min_num) # print(target_ratios) target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) # find the closest aspect ratio to the target target_aspect_ratio = find_closest_aspect_ratio( aspect_ratio, target_ratios, orig_width, orig_height, image_size) return target_aspect_ratio def dynamic_preprocess(image, min_num=MIN_CROPS, max_num=MAX_CROPS, image_size=640, use_thumbnail=False): orig_width, orig_height = image.size aspect_ratio = orig_width / orig_height # calculate the existing image aspect ratio target_ratios = set( (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if i * j <= max_num and i * j >= min_num) # print(target_ratios) target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) # find the closest aspect ratio to the target target_aspect_ratio = find_closest_aspect_ratio( aspect_ratio, target_ratios, orig_width, orig_height, image_size) # print(target_aspect_ratio) # calculate the target width and height target_width = image_size * target_aspect_ratio[0] target_height = image_size * target_aspect_ratio[1] blocks = target_aspect_ratio[0] * target_aspect_ratio[1] # resize the image resized_img = image.resize((target_width, target_height)) processed_images = [] for i in range(blocks): box = ( (i % (target_width // image_size)) * image_size, (i // (target_width // image_size)) * image_size, ((i % (target_width // image_size)) + 1) * image_size, ((i // (target_width // image_size)) + 1) * image_size ) # split the image split_img = resized_img.crop(box) processed_images.append(split_img) assert len(processed_images) == blocks if use_thumbnail and len(processed_images) != 1: thumbnail_img = image.resize((image_size, image_size)) processed_images.append(thumbnail_img) return processed_images, target_aspect_ratio class ImageTransform: def __init__(self, mean: Tuple[float, float, float] = (0.5, 0.5, 0.5), std: Tuple[float, float, float] = (0.5, 0.5, 0.5), normalize: bool = True): self.mean = mean self.std = std self.normalize = normalize transform_pipelines = [T.ToTensor()] if normalize: transform_pipelines.append(T.Normalize(mean, std)) self.transform = T.Compose(transform_pipelines) def __call__(self, pil_img: Image.Image): x = self.transform(pil_img) return x class DeepseekOCRProcessor(ProcessorMixin): tokenizer_class = ("LlamaTokenizer", "LlamaTokenizerFast") attributes = ["tokenizer"] def __init__( self, tokenizer: LlamaTokenizerFast = TOKENIZER, candidate_resolutions: Tuple[Tuple[int, int]] = [[1024, 1024]], patch_size: int = 16, downsample_ratio: int = 4, image_mean: Tuple[float, float, float] = (0.5, 0.5, 0.5), image_std: Tuple[float, float, float] = (0.5, 0.5, 0.5), normalize: bool = True, image_token: str = "", pad_token: str = "<|▁pad▁|>", add_special_token: bool = False, sft_format: str = "deepseek", mask_prompt: bool = True, ignore_id: int = -100, **kwargs, ): # self.candidate_resolutions = candidate_resolutions # placeholder no use self.image_size = IMAGE_SIZE self.base_size = BASE_SIZE # self.patch_size = patch_size self.patch_size = 16 self.image_mean = image_mean self.image_std = image_std self.normalize = normalize # self.downsample_ratio = downsample_ratio self.downsample_ratio = 4 self.image_transform = ImageTransform(mean=image_mean, std=image_std, normalize=normalize) self.tokenizer = tokenizer # self.tokenizer = add_special_token(tokenizer) self.tokenizer.padding_side = 'left' # must set this,padding side with make a difference in batch inference # add the pad_token as special token to use 'tokenizer.pad_token' and 'tokenizer.pad_token_id' if self.tokenizer.pad_token is None: self.tokenizer.add_special_tokens({'pad_token': pad_token}) # add image token # image_token_id = self.tokenizer.vocab.get(image_token) # if image_token_id is None: # special_tokens = [image_token] # special_tokens_dict = {"additional_special_tokens": special_tokens} # self.tokenizer.add_special_tokens(special_tokens_dict) self.image_token_id = self.tokenizer.vocab.get(image_token) # add five special tokens for grounding-related tasks # <|ref|>, <|/ref|>, <|det|>, <|/det|>, <|grounding|> # special_tokens = ['<|ref|>', '<|/ref|>', '<|det|>', '<|/det|>', '<|grounding|>'] # special_tokens_dict = {"additional_special_tokens": special_tokens} # special_tokens = ['','<|ref|>', '<|/ref|>', '<|det|>', '<|/det|>', '<|grounding|>', '', '', '', ''] # special_tokens_dict = {"additional_special_tokens": special_tokens} # self.tokenizer.add_special_tokens(special_tokens_dict) # # add special tokens for SFT data # special_tokens = ["<|User|>", "<|Assistant|>"] # special_tokens_dict = {"additional_special_tokens": special_tokens} # self.tokenizer.add_special_tokens(special_tokens_dict) self.image_token = image_token self.pad_token = pad_token self.add_special_token = add_special_token self.sft_format = sft_format self.mask_prompt = mask_prompt self.ignore_id = ignore_id super().__init__( tokenizer, **kwargs, ) # def select_best_resolution(self, image_size): # # used for cropping # original_width, original_height = image_size # best_fit = None # max_effective_resolution = 0 # min_wasted_resolution = float("inf") # for width, height in self.candidate_resolutions: # scale = min(width / original_width, height / original_height) # downscaled_width, downscaled_height = int( # original_width * scale), int(original_height * scale) # effective_resolution = min(downscaled_width * downscaled_height, # original_width * original_height) # wasted_resolution = (width * height) - effective_resolution # if effective_resolution > max_effective_resolution or ( # effective_resolution == max_effective_resolution # and wasted_resolution < min_wasted_resolution): # max_effective_resolution = effective_resolution # min_wasted_resolution = wasted_resolution # best_fit = (width, height) # return best_fit @property def bos_id(self): return self.tokenizer.bos_token_id @property def eos_id(self): return self.tokenizer.eos_token_id @property def pad_id(self): return self.tokenizer.pad_token_id def encode(self, text: str, bos: bool = True, eos: bool = False): t = self.tokenizer.encode(text, add_special_tokens=False) if bos: t = [self.bos_id] + t if eos: t = t + [self.eos_id] return t def decode(self, t: List[int], **kwargs) -> str: return self.tokenizer.decode(t, **kwargs) def process_one( self, prompt: str, images: List, inference_mode: bool = True, **kwargs, ): """ Args: prompt (str): the formatted prompt; conversations (List[Dict]): conversations with a list of messages; images (List[ImageType]): the list of images; inference_mode (bool): if True, then remove the last eos token; system_prompt (str): the system prompt; **kwargs: Returns: outputs (BaseProcessorOutput): the output of the processor, - input_ids (torch.LongTensor): [N + image tokens] - target_ids (torch.LongTensor): [N + image tokens] - pixel_values (torch.FloatTensor): [n_patches, 3, H, W] - image_id (int): the id of the image token - num_image_tokens (List[int]): the number of image tokens """ assert (prompt is not None and images is not None ), "prompt and images must be used at the same time." sft_format = prompt input_ids, pixel_values, images_crop, images_seq_mask, images_spatial_crop, num_image_tokens, _ = images[0] return { "input_ids": input_ids, "pixel_values": pixel_values, "images_crop": images_crop, "images_seq_mask": images_seq_mask, "images_spatial_crop": images_spatial_crop, "num_image_tokens": num_image_tokens, } # prepare = BatchFeature( # data=dict( # input_ids=input_ids, # pixel_values=pixel_values, # images_crop = images_crop, # images_seq_mask=images_seq_mask, # images_spatial_crop=images_spatial_crop, # num_image_tokens=num_image_tokens, # ), # tensor_type="pt", # ) # return prepare def __call__( self, *, prompt: str, images: List, inference_mode: bool = True, **kwargs, ): """ Args: prompt (str): the formatted prompt; images (List[ImageType]): the list of images; inference_mode (bool): if True, then remove the last eos token; **kwargs: Returns: outputs (BaseProcessorOutput): the output of the processor, - input_ids (torch.LongTensor): [N + image tokens] - images (torch.FloatTensor): [n_images, 3, H, W] - image_id (int): the id of the image token - num_image_tokens (List[int]): the number of image tokens """ prepare = self.process_one( prompt=prompt, images=images, inference_mode=inference_mode, ) return prepare def tokenize_with_images( self, # conversation: str, images: List[Image.Image], bos: bool = True, eos: bool = True, cropping: bool = True, ): """Tokenize text with tags.""" # print(conversation) conversation = PROMPT assert conversation.count(self.image_token) == len(images) text_splits = conversation.split(self.image_token) images_list, images_crop_list, images_seq_mask, images_spatial_crop = [], [], [], [] image_shapes = [] num_image_tokens = [] tokenized_str = [] # print('image: ', len(images)) for text_sep, image in zip(text_splits, images): """encode text_sep""" tokenized_sep = self.encode(text_sep, bos=False, eos=False) tokenized_str += tokenized_sep images_seq_mask += [False] * len(tokenized_sep) """select best resolution for anyres""" # if cropping: # best_width, best_height = self.select_best_resolution(image.size) # else: # best_width, best_height = self.image_size, self.image_size image_shapes.append(image.size) if image.size[0] <= 640 and image.size[1] <= 640: crop_ratio = [1, 1] else: if cropping: # print('image-size: ', image.size) # best_width, best_height = select_best_resolution(image.size, self.candidate_resolutions) # print('image ', image.size) # print('open_size:', image.size) images_crop_raw, crop_ratio = dynamic_preprocess(image, image_size=IMAGE_SIZE) # print('crop_ratio: ', crop_ratio) else: # best_width, best_height = self.image_size, self.image_size crop_ratio = [1, 1] # print(image.size, (best_width, best_height)) # check the select_best_resolutions func # print(crop_ratio) """process the global view""" # if cropping if self.image_size <= 640 and not cropping: # print('directly resize') image = image.resize((self.image_size, self.image_size)) global_view = ImageOps.pad(image, (self.base_size, self.base_size), color=tuple(int(x * 255) for x in self.image_transform.mean)) images_list.append(self.image_transform(global_view)) """record height / width crop num""" # width_crop_num, height_crop_num = best_width // self.image_size, best_height // self.image_size num_width_tiles, num_height_tiles = crop_ratio images_spatial_crop.append([num_width_tiles, num_height_tiles]) if num_width_tiles > 1 or num_height_tiles > 1: """process the local views""" # local_view = ImageOps.pad(image, (best_width, best_height), # color=tuple(int(x * 255) for x in self.image_transform.mean)) # for i in range(0, best_height, self.image_size): # for j in range(0, best_width, self.image_size): # images_crop_list.append( # self.image_transform(local_view.crop((j, i, j + self.image_size, i + self.image_size)))) for i in range(len(images_crop_raw)): images_crop_list.append(self.image_transform(images_crop_raw[i])) # """process the global view""" # global_view = ImageOps.pad(image, (self.image_size, self.image_size), # color=tuple(int(x * 255) for x in self.image_transform.mean)) # images_list.append(self.image_transform(global_view)) # """process the local views""" # local_view = ImageOps.pad(image, (best_width, best_height), # color=tuple(int(x * 255) for x in self.image_transform.mean)) # for i in range(0, best_height, self.image_size): # for j in range(0, best_width, self.image_size): # images_list.append( # self.image_transform(local_view.crop((j, i, j + self.image_size, i + self.image_size)))) # """add image tokens""" """add image tokens""" num_queries = math.ceil((self.image_size // self.patch_size) / self.downsample_ratio) num_queries_base = math.ceil((self.base_size // self.patch_size) / self.downsample_ratio) tokenized_image = ([self.image_token_id] * num_queries_base + [self.image_token_id]) * num_queries_base tokenized_image += [self.image_token_id] if num_width_tiles > 1 or num_height_tiles > 1: tokenized_image += ([self.image_token_id] * (num_queries * num_width_tiles) + [self.image_token_id]) * ( num_queries * num_height_tiles) tokenized_str += tokenized_image images_seq_mask += [True] * len(tokenized_image) num_image_tokens.append(len(tokenized_image)) """process the last text split""" tokenized_sep = self.encode(text_splits[-1], bos=False, eos=False) tokenized_str += tokenized_sep images_seq_mask += [False] * len(tokenized_sep) """add the bos and eos tokens""" if bos: tokenized_str = [self.bos_id] + tokenized_str images_seq_mask = [False] + images_seq_mask if eos: tokenized_str = tokenized_str + [self.eos_id] images_seq_mask = images_seq_mask + [False] assert len(tokenized_str) == len( images_seq_mask), f"tokenize_with_images func: tokenized_str's length {len(tokenized_str)} is not equal to imags_seq_mask's length {len(images_seq_mask)}" masked_tokenized_str = [] for token_index in tokenized_str: if token_index != self.image_token_id: masked_tokenized_str.append(token_index) else: masked_tokenized_str.append(self.ignore_id) assert len(tokenized_str) == len(images_seq_mask) == len(masked_tokenized_str), \ (f"tokenized_str's length {len(tokenized_str)}, input_ids' length {len(masked_tokenized_str)}, " f"imags_seq_mask's length {len(images_seq_mask)}, are not equal") input_ids = torch.LongTensor(tokenized_str) target_ids = torch.LongTensor(masked_tokenized_str) images_seq_mask = torch.tensor(images_seq_mask, dtype=torch.bool) # set input_ids < 0 | input_ids == self.image_token_id as ignore_id target_ids[(input_ids < 0) | (input_ids == self.image_token_id)] = self.ignore_id input_ids[input_ids < 0] = self.pad_id inference_mode = True if inference_mode: # Remove the ending eos token assert input_ids[-1] == self.eos_id input_ids = input_ids[:-1] target_ids = target_ids[:-1] images_seq_mask = images_seq_mask[:-1] if len(images_list) == 0: pixel_values = torch.zeros((1, 3, self.base_size, self.base_size)) images_spatial_crop = torch.zeros((1, 1), dtype=torch.long) images_crop = torch.zeros((1, 3, self.image_size, self.image_size)).unsqueeze(0) else: pixel_values = torch.stack(images_list, dim=0) images_spatial_crop = torch.tensor(images_spatial_crop, dtype=torch.long) if images_crop_list: images_crop = torch.stack(images_crop_list, dim=0).unsqueeze(0) else: images_crop = torch.zeros((1, 3, self.image_size, self.image_size)).unsqueeze(0) input_ids = input_ids.unsqueeze(0) return [[input_ids, pixel_values, images_crop, images_seq_mask, images_spatial_crop, num_image_tokens, image_shapes]] AutoProcessor.register("DeepseekVLV2Processor", DeepseekOCRProcessor)