Linoy Tsaban
commited on
Commit
·
162c70e
1
Parent(s):
11ce2aa
Create modified_pipeline_semantic_stable_diffusion.py
Browse files
modified_pipeline_semantic_stable_diffusion.py
ADDED
|
@@ -0,0 +1,757 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import inspect
|
| 3 |
+
import warnings
|
| 4 |
+
from itertools import repeat
|
| 5 |
+
from typing import Callable, List, Optional, Union
|
| 6 |
+
|
| 7 |
+
import torch
|
| 8 |
+
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
|
| 9 |
+
|
| 10 |
+
from diffusers.image_processor import VaeImageProcessor
|
| 11 |
+
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
| 12 |
+
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
| 13 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
| 14 |
+
from diffusers.utils import logging, randn_tensor
|
| 15 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
| 16 |
+
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
| 17 |
+
# from . import SemanticStableDiffusionPipelineOutput
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
class SemanticStableDiffusionPipeline(DiffusionPipeline):
|
| 24 |
+
r"""
|
| 25 |
+
Pipeline for text-to-image generation with latent editing.
|
| 26 |
+
|
| 27 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
| 28 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
| 29 |
+
|
| 30 |
+
This model builds on the implementation of ['StableDiffusionPipeline']
|
| 31 |
+
|
| 32 |
+
Args:
|
| 33 |
+
vae ([`AutoencoderKL`]):
|
| 34 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
| 35 |
+
text_encoder ([`CLIPTextModel`]):
|
| 36 |
+
Frozen text-encoder. Stable Diffusion uses the text portion of
|
| 37 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
| 38 |
+
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
| 39 |
+
tokenizer (`CLIPTokenizer`):
|
| 40 |
+
Tokenizer of class
|
| 41 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
| 42 |
+
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
| 43 |
+
scheduler ([`SchedulerMixin`]):
|
| 44 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of
|
| 45 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
| 46 |
+
safety_checker ([`Q16SafetyChecker`]):
|
| 47 |
+
Classification module that estimates whether generated images could be considered offensive or harmful.
|
| 48 |
+
Please, refer to the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4) for details.
|
| 49 |
+
feature_extractor ([`CLIPImageProcessor`]):
|
| 50 |
+
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
| 51 |
+
"""
|
| 52 |
+
|
| 53 |
+
_optional_components = ["safety_checker", "feature_extractor"]
|
| 54 |
+
|
| 55 |
+
def __init__(
|
| 56 |
+
self,
|
| 57 |
+
vae: AutoencoderKL,
|
| 58 |
+
text_encoder: CLIPTextModel,
|
| 59 |
+
tokenizer: CLIPTokenizer,
|
| 60 |
+
unet: UNet2DConditionModel,
|
| 61 |
+
scheduler: KarrasDiffusionSchedulers,
|
| 62 |
+
safety_checker: StableDiffusionSafetyChecker,
|
| 63 |
+
feature_extractor: CLIPImageProcessor,
|
| 64 |
+
requires_safety_checker: bool = True,
|
| 65 |
+
):
|
| 66 |
+
super().__init__()
|
| 67 |
+
|
| 68 |
+
if safety_checker is None and requires_safety_checker:
|
| 69 |
+
logger.warning(
|
| 70 |
+
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
|
| 71 |
+
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
|
| 72 |
+
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
|
| 73 |
+
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
|
| 74 |
+
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
|
| 75 |
+
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
+
if safety_checker is not None and feature_extractor is None:
|
| 79 |
+
raise ValueError(
|
| 80 |
+
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
|
| 81 |
+
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
|
| 82 |
+
)
|
| 83 |
+
|
| 84 |
+
self.register_modules(
|
| 85 |
+
vae=vae,
|
| 86 |
+
text_encoder=text_encoder,
|
| 87 |
+
tokenizer=tokenizer,
|
| 88 |
+
unet=unet,
|
| 89 |
+
scheduler=scheduler,
|
| 90 |
+
safety_checker=safety_checker,
|
| 91 |
+
feature_extractor=feature_extractor,
|
| 92 |
+
)
|
| 93 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
| 94 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
| 95 |
+
self.register_to_config(requires_safety_checker=requires_safety_checker)
|
| 96 |
+
|
| 97 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
|
| 98 |
+
def run_safety_checker(self, image, device, dtype):
|
| 99 |
+
if self.safety_checker is None:
|
| 100 |
+
has_nsfw_concept = None
|
| 101 |
+
else:
|
| 102 |
+
if torch.is_tensor(image):
|
| 103 |
+
feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
|
| 104 |
+
else:
|
| 105 |
+
feature_extractor_input = self.image_processor.numpy_to_pil(image)
|
| 106 |
+
safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
|
| 107 |
+
image, has_nsfw_concept = self.safety_checker(
|
| 108 |
+
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
|
| 109 |
+
)
|
| 110 |
+
return image, has_nsfw_concept
|
| 111 |
+
|
| 112 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
|
| 113 |
+
def decode_latents(self, latents):
|
| 114 |
+
warnings.warn(
|
| 115 |
+
"The decode_latents method is deprecated and will be removed in a future version. Please"
|
| 116 |
+
" use VaeImageProcessor instead",
|
| 117 |
+
FutureWarning,
|
| 118 |
+
)
|
| 119 |
+
latents = 1 / self.vae.config.scaling_factor * latents
|
| 120 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
| 121 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
| 122 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
| 123 |
+
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
| 124 |
+
return image
|
| 125 |
+
|
| 126 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
| 127 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
| 128 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
| 129 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
| 130 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
| 131 |
+
# and should be between [0, 1]
|
| 132 |
+
|
| 133 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
| 134 |
+
extra_step_kwargs = {}
|
| 135 |
+
if accepts_eta:
|
| 136 |
+
extra_step_kwargs["eta"] = eta
|
| 137 |
+
|
| 138 |
+
# check if the scheduler accepts generator
|
| 139 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
| 140 |
+
if accepts_generator:
|
| 141 |
+
extra_step_kwargs["generator"] = generator
|
| 142 |
+
return extra_step_kwargs
|
| 143 |
+
|
| 144 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.check_inputs
|
| 145 |
+
def check_inputs(
|
| 146 |
+
self,
|
| 147 |
+
prompt,
|
| 148 |
+
height,
|
| 149 |
+
width,
|
| 150 |
+
callback_steps,
|
| 151 |
+
negative_prompt=None,
|
| 152 |
+
prompt_embeds=None,
|
| 153 |
+
negative_prompt_embeds=None,
|
| 154 |
+
):
|
| 155 |
+
if height % 8 != 0 or width % 8 != 0:
|
| 156 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
| 157 |
+
|
| 158 |
+
if (callback_steps is None) or (
|
| 159 |
+
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
| 160 |
+
):
|
| 161 |
+
raise ValueError(
|
| 162 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
| 163 |
+
f" {type(callback_steps)}."
|
| 164 |
+
)
|
| 165 |
+
|
| 166 |
+
if prompt is not None and prompt_embeds is not None:
|
| 167 |
+
raise ValueError(
|
| 168 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
| 169 |
+
" only forward one of the two."
|
| 170 |
+
)
|
| 171 |
+
elif prompt is None and prompt_embeds is None:
|
| 172 |
+
raise ValueError(
|
| 173 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
| 174 |
+
)
|
| 175 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
| 176 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
| 177 |
+
|
| 178 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
| 179 |
+
raise ValueError(
|
| 180 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
| 181 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
| 182 |
+
)
|
| 183 |
+
|
| 184 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
| 185 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
| 186 |
+
raise ValueError(
|
| 187 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
| 188 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
| 189 |
+
f" {negative_prompt_embeds.shape}."
|
| 190 |
+
)
|
| 191 |
+
|
| 192 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
| 193 |
+
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
| 194 |
+
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
| 195 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
| 196 |
+
raise ValueError(
|
| 197 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
| 198 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
| 199 |
+
)
|
| 200 |
+
|
| 201 |
+
if latents is None:
|
| 202 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
| 203 |
+
else:
|
| 204 |
+
latents = latents.to(device)
|
| 205 |
+
|
| 206 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
| 207 |
+
latents = latents * self.scheduler.init_noise_sigma
|
| 208 |
+
return latents
|
| 209 |
+
|
| 210 |
+
@torch.no_grad()
|
| 211 |
+
def __call__(
|
| 212 |
+
self,
|
| 213 |
+
prompt: Union[str, List[str]],
|
| 214 |
+
height: Optional[int] = None,
|
| 215 |
+
width: Optional[int] = None,
|
| 216 |
+
num_inference_steps: int = 50,
|
| 217 |
+
guidance_scale: float = 7.5,
|
| 218 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
| 219 |
+
num_images_per_prompt: int = 1,
|
| 220 |
+
eta: float = 0.0,
|
| 221 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
| 222 |
+
latents: Optional[torch.FloatTensor] = None,
|
| 223 |
+
output_type: Optional[str] = "pil",
|
| 224 |
+
return_dict: bool = True,
|
| 225 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
| 226 |
+
callback_steps: int = 1,
|
| 227 |
+
editing_prompt: Optional[Union[str, List[str]]] = None,
|
| 228 |
+
editing_prompt_embeddings: Optional[torch.Tensor] = None,
|
| 229 |
+
reverse_editing_direction: Optional[Union[bool, List[bool]]] = False,
|
| 230 |
+
edit_guidance_scale: Optional[Union[float, List[float]]] = 5,
|
| 231 |
+
edit_warmup_steps: Optional[Union[int, List[int]]] = 10,
|
| 232 |
+
edit_cooldown_steps: Optional[Union[int, List[int]]] = None,
|
| 233 |
+
edit_threshold: Optional[Union[float, List[float]]] = 0.9,
|
| 234 |
+
edit_momentum_scale: Optional[float] = 0.1,
|
| 235 |
+
edit_mom_beta: Optional[float] = 0.4,
|
| 236 |
+
edit_weights: Optional[List[float]] = None,
|
| 237 |
+
sem_guidance: Optional[List[torch.Tensor]] = None,
|
| 238 |
+
|
| 239 |
+
# DDPM additions
|
| 240 |
+
use_ddpm: bool = False,
|
| 241 |
+
wts: Optional[List[torch.Tensor]] = None,
|
| 242 |
+
zs: Optional[List[torch.Tensor]] = None
|
| 243 |
+
):
|
| 244 |
+
r"""
|
| 245 |
+
Function invoked when calling the pipeline for generation.
|
| 246 |
+
|
| 247 |
+
Args:
|
| 248 |
+
prompt (`str` or `List[str]`):
|
| 249 |
+
The prompt or prompts to guide the image generation.
|
| 250 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
| 251 |
+
The height in pixels of the generated image.
|
| 252 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
| 253 |
+
The width in pixels of the generated image.
|
| 254 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
| 255 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
| 256 |
+
expense of slower inference.
|
| 257 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
| 258 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
| 259 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
| 260 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
| 261 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
| 262 |
+
usually at the expense of lower image quality.
|
| 263 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
| 264 |
+
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
|
| 265 |
+
if `guidance_scale` is less than `1`).
|
| 266 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
| 267 |
+
The number of images to generate per prompt.
|
| 268 |
+
eta (`float`, *optional*, defaults to 0.0):
|
| 269 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
| 270 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
| 271 |
+
generator (`torch.Generator`, *optional*):
|
| 272 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
| 273 |
+
to make generation deterministic.
|
| 274 |
+
latents (`torch.FloatTensor`, *optional*):
|
| 275 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
| 276 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
| 277 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
| 278 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
| 279 |
+
The output format of the generate image. Choose between
|
| 280 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
| 281 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 282 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
| 283 |
+
plain tuple.
|
| 284 |
+
callback (`Callable`, *optional*):
|
| 285 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
| 286 |
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
| 287 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
| 288 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
| 289 |
+
called at every step.
|
| 290 |
+
editing_prompt (`str` or `List[str]`, *optional*):
|
| 291 |
+
The prompt or prompts to use for Semantic guidance. Semantic guidance is disabled by setting
|
| 292 |
+
`editing_prompt = None`. Guidance direction of prompt should be specified via
|
| 293 |
+
`reverse_editing_direction`.
|
| 294 |
+
editing_prompt_embeddings (`torch.Tensor>`, *optional*):
|
| 295 |
+
Pre-computed embeddings to use for semantic guidance. Guidance direction of embedding should be
|
| 296 |
+
specified via `reverse_editing_direction`.
|
| 297 |
+
reverse_editing_direction (`bool` or `List[bool]`, *optional*, defaults to `False`):
|
| 298 |
+
Whether the corresponding prompt in `editing_prompt` should be increased or decreased.
|
| 299 |
+
edit_guidance_scale (`float` or `List[float]`, *optional*, defaults to 5):
|
| 300 |
+
Guidance scale for semantic guidance. If provided as list values should correspond to `editing_prompt`.
|
| 301 |
+
`edit_guidance_scale` is defined as `s_e` of equation 6 of [SEGA
|
| 302 |
+
Paper](https://arxiv.org/pdf/2301.12247.pdf).
|
| 303 |
+
edit_warmup_steps (`float` or `List[float]`, *optional*, defaults to 10):
|
| 304 |
+
Number of diffusion steps (for each prompt) for which semantic guidance will not be applied. Momentum
|
| 305 |
+
will still be calculated for those steps and applied once all warmup periods are over.
|
| 306 |
+
`edit_warmup_steps` is defined as `delta` (δ) of [SEGA Paper](https://arxiv.org/pdf/2301.12247.pdf).
|
| 307 |
+
edit_cooldown_steps (`float` or `List[float]`, *optional*, defaults to `None`):
|
| 308 |
+
Number of diffusion steps (for each prompt) after which semantic guidance will no longer be applied.
|
| 309 |
+
edit_threshold (`float` or `List[float]`, *optional*, defaults to 0.9):
|
| 310 |
+
Threshold of semantic guidance.
|
| 311 |
+
edit_momentum_scale (`float`, *optional*, defaults to 0.1):
|
| 312 |
+
Scale of the momentum to be added to the semantic guidance at each diffusion step. If set to 0.0
|
| 313 |
+
momentum will be disabled. Momentum is already built up during warmup, i.e. for diffusion steps smaller
|
| 314 |
+
than `sld_warmup_steps`. Momentum will only be added to latent guidance once all warmup periods are
|
| 315 |
+
finished. `edit_momentum_scale` is defined as `s_m` of equation 7 of [SEGA
|
| 316 |
+
Paper](https://arxiv.org/pdf/2301.12247.pdf).
|
| 317 |
+
edit_mom_beta (`float`, *optional*, defaults to 0.4):
|
| 318 |
+
Defines how semantic guidance momentum builds up. `edit_mom_beta` indicates how much of the previous
|
| 319 |
+
momentum will be kept. Momentum is already built up during warmup, i.e. for diffusion steps smaller
|
| 320 |
+
than `edit_warmup_steps`. `edit_mom_beta` is defined as `beta_m` (β) of equation 8 of [SEGA
|
| 321 |
+
Paper](https://arxiv.org/pdf/2301.12247.pdf).
|
| 322 |
+
edit_weights (`List[float]`, *optional*, defaults to `None`):
|
| 323 |
+
Indicates how much each individual concept should influence the overall guidance. If no weights are
|
| 324 |
+
provided all concepts are applied equally. `edit_mom_beta` is defined as `g_i` of equation 9 of [SEGA
|
| 325 |
+
Paper](https://arxiv.org/pdf/2301.12247.pdf).
|
| 326 |
+
sem_guidance (`List[torch.Tensor]`, *optional*):
|
| 327 |
+
List of pre-generated guidance vectors to be applied at generation. Length of the list has to
|
| 328 |
+
correspond to `num_inference_steps`.
|
| 329 |
+
|
| 330 |
+
Returns:
|
| 331 |
+
[`~pipelines.semantic_stable_diffusion.SemanticStableDiffusionPipelineOutput`] or `tuple`:
|
| 332 |
+
[`~pipelines.semantic_stable_diffusion.SemanticStableDiffusionPipelineOutput`] if `return_dict` is True,
|
| 333 |
+
otherwise a `tuple. When returning a tuple, the first element is a list with the generated images, and the
|
| 334 |
+
second element is a list of `bool`s denoting whether the corresponding generated image likely represents
|
| 335 |
+
"not-safe-for-work" (nsfw) content, according to the `safety_checker`.
|
| 336 |
+
"""
|
| 337 |
+
# 0. Default height and width to unet
|
| 338 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
| 339 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
| 340 |
+
|
| 341 |
+
# 1. Check inputs. Raise error if not correct
|
| 342 |
+
self.check_inputs(prompt, height, width, callback_steps)
|
| 343 |
+
|
| 344 |
+
# 2. Define call parameters
|
| 345 |
+
batch_size = 1 if isinstance(prompt, str) else len(prompt)
|
| 346 |
+
|
| 347 |
+
if editing_prompt:
|
| 348 |
+
enable_edit_guidance = True
|
| 349 |
+
if isinstance(editing_prompt, str):
|
| 350 |
+
editing_prompt = [editing_prompt]
|
| 351 |
+
enabled_editing_prompts = len(editing_prompt)
|
| 352 |
+
elif editing_prompt_embeddings is not None:
|
| 353 |
+
enable_edit_guidance = True
|
| 354 |
+
enabled_editing_prompts = editing_prompt_embeddings.shape[0]
|
| 355 |
+
else:
|
| 356 |
+
enabled_editing_prompts = 0
|
| 357 |
+
enable_edit_guidance = False
|
| 358 |
+
|
| 359 |
+
# get prompt text embeddings
|
| 360 |
+
text_inputs = self.tokenizer(
|
| 361 |
+
prompt,
|
| 362 |
+
padding="max_length",
|
| 363 |
+
max_length=self.tokenizer.model_max_length,
|
| 364 |
+
return_tensors="pt",
|
| 365 |
+
)
|
| 366 |
+
text_input_ids = text_inputs.input_ids
|
| 367 |
+
|
| 368 |
+
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
|
| 369 |
+
removed_text = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :])
|
| 370 |
+
logger.warning(
|
| 371 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
| 372 |
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
| 373 |
+
)
|
| 374 |
+
text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length]
|
| 375 |
+
text_embeddings = self.text_encoder(text_input_ids.to(self.device))[0]
|
| 376 |
+
|
| 377 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
| 378 |
+
bs_embed, seq_len, _ = text_embeddings.shape
|
| 379 |
+
text_embeddings = text_embeddings.repeat(1, num_images_per_prompt, 1)
|
| 380 |
+
text_embeddings = text_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
| 381 |
+
|
| 382 |
+
if enable_edit_guidance:
|
| 383 |
+
# get safety text embeddings
|
| 384 |
+
if editing_prompt_embeddings is None:
|
| 385 |
+
edit_concepts_input = self.tokenizer(
|
| 386 |
+
[x for item in editing_prompt for x in repeat(item, batch_size)],
|
| 387 |
+
padding="max_length",
|
| 388 |
+
max_length=self.tokenizer.model_max_length,
|
| 389 |
+
return_tensors="pt",
|
| 390 |
+
)
|
| 391 |
+
|
| 392 |
+
edit_concepts_input_ids = edit_concepts_input.input_ids
|
| 393 |
+
|
| 394 |
+
if edit_concepts_input_ids.shape[-1] > self.tokenizer.model_max_length:
|
| 395 |
+
removed_text = self.tokenizer.batch_decode(
|
| 396 |
+
edit_concepts_input_ids[:, self.tokenizer.model_max_length :]
|
| 397 |
+
)
|
| 398 |
+
logger.warning(
|
| 399 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
| 400 |
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
| 401 |
+
)
|
| 402 |
+
edit_concepts_input_ids = edit_concepts_input_ids[:, : self.tokenizer.model_max_length]
|
| 403 |
+
edit_concepts = self.text_encoder(edit_concepts_input_ids.to(self.device))[0]
|
| 404 |
+
else:
|
| 405 |
+
edit_concepts = editing_prompt_embeddings.to(self.device).repeat(batch_size, 1, 1)
|
| 406 |
+
|
| 407 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
| 408 |
+
bs_embed_edit, seq_len_edit, _ = edit_concepts.shape
|
| 409 |
+
edit_concepts = edit_concepts.repeat(1, num_images_per_prompt, 1)
|
| 410 |
+
edit_concepts = edit_concepts.view(bs_embed_edit * num_images_per_prompt, seq_len_edit, -1)
|
| 411 |
+
|
| 412 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
| 413 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
| 414 |
+
# corresponds to doing no classifier free guidance.
|
| 415 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
| 416 |
+
# get unconditional embeddings for classifier free guidance
|
| 417 |
+
|
| 418 |
+
if do_classifier_free_guidance:
|
| 419 |
+
uncond_tokens: List[str]
|
| 420 |
+
if negative_prompt is None:
|
| 421 |
+
uncond_tokens = [""]
|
| 422 |
+
elif type(prompt) is not type(negative_prompt):
|
| 423 |
+
raise TypeError(
|
| 424 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
| 425 |
+
f" {type(prompt)}."
|
| 426 |
+
)
|
| 427 |
+
elif isinstance(negative_prompt, str):
|
| 428 |
+
uncond_tokens = [negative_prompt]
|
| 429 |
+
elif batch_size != len(negative_prompt):
|
| 430 |
+
raise ValueError(
|
| 431 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
| 432 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
| 433 |
+
" the batch size of `prompt`."
|
| 434 |
+
)
|
| 435 |
+
else:
|
| 436 |
+
uncond_tokens = negative_prompt
|
| 437 |
+
|
| 438 |
+
max_length = text_input_ids.shape[-1]
|
| 439 |
+
uncond_input = self.tokenizer(
|
| 440 |
+
uncond_tokens,
|
| 441 |
+
padding="max_length",
|
| 442 |
+
max_length=max_length,
|
| 443 |
+
truncation=True,
|
| 444 |
+
return_tensors="pt",
|
| 445 |
+
)
|
| 446 |
+
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
|
| 447 |
+
|
| 448 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
| 449 |
+
seq_len = uncond_embeddings.shape[1]
|
| 450 |
+
uncond_embeddings = uncond_embeddings.repeat(batch_size, num_images_per_prompt, 1)
|
| 451 |
+
uncond_embeddings = uncond_embeddings.view(batch_size * num_images_per_prompt, seq_len, -1)
|
| 452 |
+
|
| 453 |
+
# For classifier free guidance, we need to do two forward passes.
|
| 454 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
| 455 |
+
# to avoid doing two forward passes
|
| 456 |
+
if enable_edit_guidance:
|
| 457 |
+
text_embeddings = torch.cat([uncond_embeddings, text_embeddings, edit_concepts])
|
| 458 |
+
else:
|
| 459 |
+
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
| 460 |
+
# get the initial random noise unless the user supplied it
|
| 461 |
+
|
| 462 |
+
# 4. Prepare timesteps
|
| 463 |
+
self.scheduler.set_timesteps(num_inference_steps, device=self.device)
|
| 464 |
+
timesteps = self.scheduler.timesteps
|
| 465 |
+
if use_ddpm:
|
| 466 |
+
t_to_idx = {int(v):k for k,v in enumerate(timesteps[-zs.shape[0]:])}
|
| 467 |
+
timesteps = timesteps[-zs.shape[0]:]
|
| 468 |
+
|
| 469 |
+
# 5. Prepare latent variables
|
| 470 |
+
num_channels_latents = self.unet.config.in_channels
|
| 471 |
+
latents = self.prepare_latents(
|
| 472 |
+
batch_size * num_images_per_prompt,
|
| 473 |
+
num_channels_latents,
|
| 474 |
+
height,
|
| 475 |
+
width,
|
| 476 |
+
text_embeddings.dtype,
|
| 477 |
+
self.device,
|
| 478 |
+
generator,
|
| 479 |
+
latents,
|
| 480 |
+
)
|
| 481 |
+
|
| 482 |
+
# 6. Prepare extra step kwargs.
|
| 483 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
| 484 |
+
|
| 485 |
+
# Initialize edit_momentum to None
|
| 486 |
+
edit_momentum = None
|
| 487 |
+
|
| 488 |
+
self.uncond_estimates = None
|
| 489 |
+
self.text_estimates = None
|
| 490 |
+
self.edit_estimates = None
|
| 491 |
+
self.sem_guidance = None
|
| 492 |
+
|
| 493 |
+
for i, t in enumerate(self.progress_bar(timesteps)):
|
| 494 |
+
# expand the latents if we are doing classifier free guidance
|
| 495 |
+
latent_model_input = (
|
| 496 |
+
torch.cat([latents] * (2 + enabled_editing_prompts)) if do_classifier_free_guidance else latents
|
| 497 |
+
)
|
| 498 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
| 499 |
+
|
| 500 |
+
# predict the noise residual
|
| 501 |
+
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
|
| 502 |
+
|
| 503 |
+
# perform guidance
|
| 504 |
+
if do_classifier_free_guidance:
|
| 505 |
+
noise_pred_out = noise_pred.chunk(2 + enabled_editing_prompts) # [b,4, 64, 64]
|
| 506 |
+
noise_pred_uncond, noise_pred_text = noise_pred_out[0], noise_pred_out[1]
|
| 507 |
+
noise_pred_edit_concepts = noise_pred_out[2:]
|
| 508 |
+
|
| 509 |
+
# default text guidance
|
| 510 |
+
noise_guidance = guidance_scale * (noise_pred_text - noise_pred_uncond)
|
| 511 |
+
# noise_guidance = (noise_pred_text - noise_pred_edit_concepts[0])
|
| 512 |
+
|
| 513 |
+
if self.uncond_estimates is None:
|
| 514 |
+
self.uncond_estimates = torch.zeros((num_inference_steps + 1, *noise_pred_uncond.shape))
|
| 515 |
+
self.uncond_estimates[i] = noise_pred_uncond.detach().cpu()
|
| 516 |
+
|
| 517 |
+
if self.text_estimates is None:
|
| 518 |
+
self.text_estimates = torch.zeros((num_inference_steps + 1, *noise_pred_text.shape))
|
| 519 |
+
self.text_estimates[i] = noise_pred_text.detach().cpu()
|
| 520 |
+
|
| 521 |
+
if self.edit_estimates is None and enable_edit_guidance:
|
| 522 |
+
self.edit_estimates = torch.zeros(
|
| 523 |
+
(num_inference_steps + 1, len(noise_pred_edit_concepts), *noise_pred_edit_concepts[0].shape)
|
| 524 |
+
)
|
| 525 |
+
|
| 526 |
+
if self.sem_guidance is None:
|
| 527 |
+
self.sem_guidance = torch.zeros((num_inference_steps + 1, *noise_pred_text.shape))
|
| 528 |
+
|
| 529 |
+
if edit_momentum is None:
|
| 530 |
+
edit_momentum = torch.zeros_like(noise_guidance)
|
| 531 |
+
|
| 532 |
+
if enable_edit_guidance:
|
| 533 |
+
concept_weights = torch.zeros(
|
| 534 |
+
(len(noise_pred_edit_concepts), noise_guidance.shape[0]),
|
| 535 |
+
device=self.device,
|
| 536 |
+
dtype=noise_guidance.dtype,
|
| 537 |
+
)
|
| 538 |
+
noise_guidance_edit = torch.zeros(
|
| 539 |
+
(len(noise_pred_edit_concepts), *noise_guidance.shape),
|
| 540 |
+
device=self.device,
|
| 541 |
+
dtype=noise_guidance.dtype,
|
| 542 |
+
)
|
| 543 |
+
# noise_guidance_edit = torch.zeros_like(noise_guidance)
|
| 544 |
+
warmup_inds = []
|
| 545 |
+
for c, noise_pred_edit_concept in enumerate(noise_pred_edit_concepts):
|
| 546 |
+
self.edit_estimates[i, c] = noise_pred_edit_concept
|
| 547 |
+
if isinstance(edit_guidance_scale, list):
|
| 548 |
+
edit_guidance_scale_c = edit_guidance_scale[c]
|
| 549 |
+
else:
|
| 550 |
+
edit_guidance_scale_c = edit_guidance_scale
|
| 551 |
+
|
| 552 |
+
if isinstance(edit_threshold, list):
|
| 553 |
+
edit_threshold_c = edit_threshold[c]
|
| 554 |
+
else:
|
| 555 |
+
edit_threshold_c = edit_threshold
|
| 556 |
+
if isinstance(reverse_editing_direction, list):
|
| 557 |
+
reverse_editing_direction_c = reverse_editing_direction[c]
|
| 558 |
+
else:
|
| 559 |
+
reverse_editing_direction_c = reverse_editing_direction
|
| 560 |
+
if edit_weights:
|
| 561 |
+
edit_weight_c = edit_weights[c]
|
| 562 |
+
else:
|
| 563 |
+
edit_weight_c = 1.0
|
| 564 |
+
if isinstance(edit_warmup_steps, list):
|
| 565 |
+
edit_warmup_steps_c = edit_warmup_steps[c]
|
| 566 |
+
else:
|
| 567 |
+
edit_warmup_steps_c = edit_warmup_steps
|
| 568 |
+
|
| 569 |
+
if isinstance(edit_cooldown_steps, list):
|
| 570 |
+
edit_cooldown_steps_c = edit_cooldown_steps[c]
|
| 571 |
+
elif edit_cooldown_steps is None:
|
| 572 |
+
edit_cooldown_steps_c = i + 1
|
| 573 |
+
else:
|
| 574 |
+
edit_cooldown_steps_c = edit_cooldown_steps
|
| 575 |
+
if i >= edit_warmup_steps_c:
|
| 576 |
+
warmup_inds.append(c)
|
| 577 |
+
if i >= edit_cooldown_steps_c:
|
| 578 |
+
noise_guidance_edit[c, :, :, :, :] = torch.zeros_like(noise_pred_edit_concept)
|
| 579 |
+
continue
|
| 580 |
+
|
| 581 |
+
noise_guidance_edit_tmp = noise_pred_edit_concept - noise_pred_uncond
|
| 582 |
+
# tmp_weights = (noise_pred_text - noise_pred_edit_concept).sum(dim=(1, 2, 3))
|
| 583 |
+
tmp_weights = (noise_guidance - noise_pred_edit_concept).sum(dim=(1, 2, 3))
|
| 584 |
+
|
| 585 |
+
tmp_weights = torch.full_like(tmp_weights, edit_weight_c) # * (1 / enabled_editing_prompts)
|
| 586 |
+
if reverse_editing_direction_c:
|
| 587 |
+
noise_guidance_edit_tmp = noise_guidance_edit_tmp * -1
|
| 588 |
+
concept_weights[c, :] = tmp_weights
|
| 589 |
+
|
| 590 |
+
noise_guidance_edit_tmp = noise_guidance_edit_tmp * edit_guidance_scale_c
|
| 591 |
+
|
| 592 |
+
# torch.quantile function expects float32
|
| 593 |
+
if noise_guidance_edit_tmp.dtype == torch.float32:
|
| 594 |
+
tmp = torch.quantile(
|
| 595 |
+
torch.abs(noise_guidance_edit_tmp).flatten(start_dim=2),
|
| 596 |
+
edit_threshold_c,
|
| 597 |
+
dim=2,
|
| 598 |
+
keepdim=False,
|
| 599 |
+
)
|
| 600 |
+
else:
|
| 601 |
+
tmp = torch.quantile(
|
| 602 |
+
torch.abs(noise_guidance_edit_tmp).flatten(start_dim=2).to(torch.float32),
|
| 603 |
+
edit_threshold_c,
|
| 604 |
+
dim=2,
|
| 605 |
+
keepdim=False,
|
| 606 |
+
).to(noise_guidance_edit_tmp.dtype)
|
| 607 |
+
|
| 608 |
+
noise_guidance_edit_tmp = torch.where(
|
| 609 |
+
torch.abs(noise_guidance_edit_tmp) >= tmp[:, :, None, None],
|
| 610 |
+
noise_guidance_edit_tmp,
|
| 611 |
+
torch.zeros_like(noise_guidance_edit_tmp),
|
| 612 |
+
)
|
| 613 |
+
noise_guidance_edit[c, :, :, :, :] = noise_guidance_edit_tmp
|
| 614 |
+
|
| 615 |
+
# noise_guidance_edit = noise_guidance_edit + noise_guidance_edit_tmp
|
| 616 |
+
|
| 617 |
+
warmup_inds = torch.tensor(warmup_inds).to(self.device)
|
| 618 |
+
if len(noise_pred_edit_concepts) > warmup_inds.shape[0] > 0:
|
| 619 |
+
concept_weights = concept_weights.to("cpu") # Offload to cpu
|
| 620 |
+
noise_guidance_edit = noise_guidance_edit.to("cpu")
|
| 621 |
+
|
| 622 |
+
concept_weights_tmp = torch.index_select(concept_weights.to(self.device), 0, warmup_inds)
|
| 623 |
+
concept_weights_tmp = torch.where(
|
| 624 |
+
concept_weights_tmp < 0, torch.zeros_like(concept_weights_tmp), concept_weights_tmp
|
| 625 |
+
)
|
| 626 |
+
concept_weights_tmp = concept_weights_tmp / concept_weights_tmp.sum(dim=0)
|
| 627 |
+
# concept_weights_tmp = torch.nan_to_num(concept_weights_tmp)
|
| 628 |
+
|
| 629 |
+
noise_guidance_edit_tmp = torch.index_select(
|
| 630 |
+
noise_guidance_edit.to(self.device), 0, warmup_inds
|
| 631 |
+
)
|
| 632 |
+
noise_guidance_edit_tmp = torch.einsum(
|
| 633 |
+
"cb,cbijk->bijk", concept_weights_tmp, noise_guidance_edit_tmp
|
| 634 |
+
)
|
| 635 |
+
noise_guidance_edit_tmp = noise_guidance_edit_tmp
|
| 636 |
+
noise_guidance = noise_guidance + noise_guidance_edit_tmp
|
| 637 |
+
|
| 638 |
+
self.sem_guidance[i] = noise_guidance_edit_tmp.detach().cpu()
|
| 639 |
+
|
| 640 |
+
del noise_guidance_edit_tmp
|
| 641 |
+
del concept_weights_tmp
|
| 642 |
+
concept_weights = concept_weights.to(self.device)
|
| 643 |
+
noise_guidance_edit = noise_guidance_edit.to(self.device)
|
| 644 |
+
|
| 645 |
+
concept_weights = torch.where(
|
| 646 |
+
concept_weights < 0, torch.zeros_like(concept_weights), concept_weights
|
| 647 |
+
)
|
| 648 |
+
|
| 649 |
+
concept_weights = torch.nan_to_num(concept_weights)
|
| 650 |
+
|
| 651 |
+
noise_guidance_edit = torch.einsum("cb,cbijk->bijk", concept_weights, noise_guidance_edit)
|
| 652 |
+
|
| 653 |
+
noise_guidance_edit = noise_guidance_edit + edit_momentum_scale * edit_momentum
|
| 654 |
+
|
| 655 |
+
edit_momentum = edit_mom_beta * edit_momentum + (1 - edit_mom_beta) * noise_guidance_edit
|
| 656 |
+
|
| 657 |
+
if warmup_inds.shape[0] == len(noise_pred_edit_concepts):
|
| 658 |
+
noise_guidance = noise_guidance + noise_guidance_edit
|
| 659 |
+
self.sem_guidance[i] = noise_guidance_edit.detach().cpu()
|
| 660 |
+
|
| 661 |
+
if sem_guidance is not None:
|
| 662 |
+
edit_guidance = sem_guidance[i].to(self.device)
|
| 663 |
+
noise_guidance = noise_guidance + edit_guidance
|
| 664 |
+
|
| 665 |
+
noise_pred = noise_pred_uncond + noise_guidance
|
| 666 |
+
## ddpm ###########################################################
|
| 667 |
+
if use_ddpm:
|
| 668 |
+
|
| 669 |
+
idx = t_to_idx[int(t)]
|
| 670 |
+
z = zs[idx] if not zs is None else None
|
| 671 |
+
|
| 672 |
+
# 1. get previous step value (=t-1)
|
| 673 |
+
prev_timestep = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps
|
| 674 |
+
# 2. compute alphas, betas
|
| 675 |
+
alpha_prod_t = self.scheduler.alphas_cumprod[t]
|
| 676 |
+
alpha_prod_t_prev = self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod
|
| 677 |
+
beta_prod_t = 1 - alpha_prod_t
|
| 678 |
+
|
| 679 |
+
# 3. compute predicted original sample from predicted noise also called
|
| 680 |
+
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
|
| 681 |
+
pred_original_sample = (latents - beta_prod_t ** (0.5) * noise_pred) / alpha_prod_t ** (0.5)
|
| 682 |
+
|
| 683 |
+
|
| 684 |
+
# 5. compute variance: "sigma_t(η)" -> see formula (16)
|
| 685 |
+
# σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
|
| 686 |
+
# variance = self.scheduler._get_variance(timestep, prev_timestep)
|
| 687 |
+
# variance = get_variance(model, t) #, prev_timestep)
|
| 688 |
+
prev_timestep = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps
|
| 689 |
+
alpha_prod_t = self.scheduler.alphas_cumprod[t]
|
| 690 |
+
alpha_prod_t_prev = self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod
|
| 691 |
+
beta_prod_t = 1 - alpha_prod_t
|
| 692 |
+
beta_prod_t_prev = 1 - alpha_prod_t_prev
|
| 693 |
+
variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev)
|
| 694 |
+
|
| 695 |
+
|
| 696 |
+
|
| 697 |
+
std_dev_t = eta * variance ** (0.5)
|
| 698 |
+
# Take care of asymetric reverse process (asyrp)
|
| 699 |
+
noise_pred_direction = noise_pred
|
| 700 |
+
|
| 701 |
+
# 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
|
| 702 |
+
# pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * model_output_direction
|
| 703 |
+
pred_sample_direction = (1 - alpha_prod_t_prev - eta * variance) ** (0.5) * noise_pred_direction
|
| 704 |
+
|
| 705 |
+
# 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
|
| 706 |
+
prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction
|
| 707 |
+
# 8. Add noice if eta > 0
|
| 708 |
+
if eta > 0:
|
| 709 |
+
if z is None:
|
| 710 |
+
z = torch.randn(noise_pred.shape, device=self.device)
|
| 711 |
+
sigma_z = eta * variance ** (0.5) * z
|
| 712 |
+
latents = prev_sample + sigma_z
|
| 713 |
+
|
| 714 |
+
## ddpm ##########################################################
|
| 715 |
+
# compute the previous noisy sample x_t -> x_t-1
|
| 716 |
+
if not use_ddpm:
|
| 717 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
| 718 |
+
|
| 719 |
+
# call the callback, if provided
|
| 720 |
+
if callback is not None and i % callback_steps == 0:
|
| 721 |
+
callback(i, t, latents)
|
| 722 |
+
|
| 723 |
+
|
| 724 |
+
# 8. Post-processing
|
| 725 |
+
image = self.decode_latents(latents)
|
| 726 |
+
|
| 727 |
+
# 9. Run safety checker
|
| 728 |
+
image, has_nsfw_concept = self.run_safety_checker(image, device, text_embeddings.dtype)
|
| 729 |
+
|
| 730 |
+
# 10. Convert to PIL
|
| 731 |
+
if output_type == "pil":
|
| 732 |
+
image = self.numpy_to_pil(image)
|
| 733 |
+
|
| 734 |
+
if not return_dict:
|
| 735 |
+
return (image, has_nsfw_concept)
|
| 736 |
+
|
| 737 |
+
#return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
| 738 |
+
|
| 739 |
+
# 8. Post-processing
|
| 740 |
+
if not output_type == "latent":
|
| 741 |
+
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
| 742 |
+
image, has_nsfw_concept = self.run_safety_checker(image, self.device, text_embeddings.dtype)
|
| 743 |
+
else:
|
| 744 |
+
image = latents
|
| 745 |
+
has_nsfw_concept = None
|
| 746 |
+
|
| 747 |
+
if has_nsfw_concept is None:
|
| 748 |
+
do_denormalize = [True] * image.shape[0]
|
| 749 |
+
else:
|
| 750 |
+
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
| 751 |
+
|
| 752 |
+
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
|
| 753 |
+
|
| 754 |
+
if not return_dict:
|
| 755 |
+
return (image, has_nsfw_concept)
|
| 756 |
+
|
| 757 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|