Spaces:
Paused
Paused
| import chainlit as cl | |
| from helper_functions import process_file, load_documents_from_url | |
| import models | |
| import agents | |
| import graph | |
| import asyncio | |
| async def on_chat_start(): | |
| global qdrant_store | |
| qdrant_store = models.semantic_tuned_Qdrant_vs | |
| global retrieval_augmented_qa_chain | |
| retrieval_augmented_qa_chain = agents.simple_rag_chain | |
| res = await ask_action() | |
| await handle_response(res) | |
| def rename(orig_author: str): | |
| return "AI Assistant" | |
| async def main(message: cl.Message): | |
| # await cl.Message(f"Processing `{message.content}`", disable_human_feedback=True) | |
| if message.content.startswith("http://") or message.content.startswith("https://"): | |
| message_type = "url" | |
| else: | |
| message_type = "question" | |
| if message_type == "url": | |
| await cl.Message(content=f"Processing `{message.content}`", disable_human_feedback=True).send() | |
| try: | |
| # Run the document loading and splitting in a thread | |
| docs = await asyncio.to_thread(load_documents_from_url, message.content) | |
| await cl.Message(content="loaded docs").send() | |
| splits = await asyncio.to_thread(models.semanticChunker_tuned.split_documents, docs) | |
| await cl.Message(content="split docs").send() | |
| for i, doc in enumerate(splits): | |
| doc.metadata["user_upload_source"] = f"source_{i}" | |
| print(f"Processing {len(docs)} text chunks") | |
| # Add to the qdrant_store asynchronously | |
| await asyncio.to_thread(qdrant_store.add_documents, splits) | |
| await cl.Message(f"Processing `{message.content}` done. You can now ask questions!").send() | |
| except Exception as e: | |
| await cl.Message(f"Error processing the document: {e}").send() | |
| res = await ask_action() | |
| await handle_response(res) | |
| else: | |
| # Handle the question as usual | |
| await cl.Message(content="Our specialist is working...", disable_human_feedback=True).send() | |
| #response = await asyncio.to_thread(retrieval_augmented_qa_chain.invoke, {"question": message.content}) | |
| response = await asyncio.to_thread(graph.getSocialMediaPost, message.content) | |
| print(response) | |
| await cl.Message(content=response).send() | |
| res = await ask_action() | |
| await handle_response(res) | |
| ## Chainlit helper functions | |
| async def ask_action(): | |
| res = await cl.AskActionMessage( | |
| content="Pick an action!", | |
| actions=[ | |
| cl.Action(name="Question", value="question", label="Create a post"), | |
| cl.Action(name="File", value="file", label="Import a file"), | |
| cl.Action(name="Url", value="url", label="Import a Webpage"), | |
| ], | |
| ).send() | |
| return res | |
| async def handle_response(res): | |
| if res and res.get("value") == "file": | |
| files = None | |
| files = await cl.AskFileMessage( | |
| content="Please upload a Text or PDF file to begin!", | |
| accept=["text/plain", "application/pdf"], | |
| max_size_mb=12, | |
| ).send() | |
| file = files[0] | |
| msg = cl.Message( | |
| content=f"Processing `{file.name}`...", disable_human_feedback=True | |
| ) | |
| await msg.send() | |
| # load the file | |
| docs = await asyncio.to_thread(process_file, file) | |
| await cl.Message(content="loaded docs").send() | |
| splits = await asyncio.to_thread(models.semanticChunker_tuned.split_documents, docs) | |
| await cl.Message(content="split docs").send() | |
| for i, doc in enumerate(splits): | |
| doc.metadata["user_upload_source"] = f"source_{i}" | |
| print(f"Processing {len(docs)} text chunks") | |
| # Add to the qdrant_store | |
| await asyncio.to_thread(qdrant_store.add_documents, splits) | |
| await cl.Message(content="added to vs").send() | |
| await cl.Message(content=f"Processing `{file.name}` done.").send() | |
| res = await ask_action() | |
| await handle_response(res) | |
| if res and res.get("value") == "url": | |
| await cl.Message(content="Submit a url link in the message box below.").send() | |
| if res and res.get("value") == "question": | |
| await cl.Message(content="Give us your idea!").send() | |