Delete display
Browse files- display/css_html_js.py +0 -282
- display/formatting.py +0 -27
- display/utils.py +0 -110
display/css_html_js.py
DELETED
|
@@ -1,282 +0,0 @@
|
|
| 1 |
-
custom_css = """
|
| 2 |
-
|
| 3 |
-
.markdown-text {
|
| 4 |
-
font-size: 16px !important;
|
| 5 |
-
line-height: 1.6 !important;
|
| 6 |
-
}
|
| 7 |
-
|
| 8 |
-
.gradio-dataframe table {
|
| 9 |
-
table-layout: auto; /* 根据内容自动分配列宽 */
|
| 10 |
-
width: 100%; /* 占满容器宽度 */
|
| 11 |
-
}
|
| 12 |
-
|
| 13 |
-
.gradio-dataframe th,
|
| 14 |
-
.gradio-dataframe td {
|
| 15 |
-
white-space: nowrap; /* 不换行 */
|
| 16 |
-
padding: 6px 10px; /* 内边距更美观 */
|
| 17 |
-
}
|
| 18 |
-
|
| 19 |
-
/* Enhanced Leaderboard table styling */
|
| 20 |
-
.dataframe {
|
| 21 |
-
background: white !important;
|
| 22 |
-
border-radius: 12px !important;
|
| 23 |
-
box-shadow: 0 4px 16px rgba(0, 0, 0, 0.08) !important;
|
| 24 |
-
overflow: hidden !important;
|
| 25 |
-
border: 1px solid #e8ecef !important;
|
| 26 |
-
font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', system-ui, sans-serif !important;
|
| 27 |
-
}
|
| 28 |
-
|
| 29 |
-
.dataframe th {
|
| 30 |
-
background: linear-gradient(135deg, #f8f9fa 0%, #e9ecef 100%) !important;
|
| 31 |
-
color: #2c3e50 !important;
|
| 32 |
-
font-weight: 600 !important;
|
| 33 |
-
font-size: 11px !important;
|
| 34 |
-
padding: 16px 12px !important;
|
| 35 |
-
text-align: center !important;
|
| 36 |
-
border-bottom: 2px solid #dee2e6 !important;
|
| 37 |
-
letter-spacing: 0.025em !important;
|
| 38 |
-
text-transform: uppercase !important;
|
| 39 |
-
}
|
| 40 |
-
|
| 41 |
-
/* Override any conflicting styles */
|
| 42 |
-
.dataframe thead th {
|
| 43 |
-
font-size: 11px !important;
|
| 44 |
-
}
|
| 45 |
-
|
| 46 |
-
.dataframe th span {
|
| 47 |
-
font-size: 11px !important;
|
| 48 |
-
}
|
| 49 |
-
|
| 50 |
-
.dataframe td {
|
| 51 |
-
padding: 14px 12px !important;
|
| 52 |
-
border-bottom: 1px solid #f0f2f5 !important;
|
| 53 |
-
text-align: center !important;
|
| 54 |
-
vertical-align: middle !important;
|
| 55 |
-
font-size: 15px !important;
|
| 56 |
-
color: #2c3e50 !important;
|
| 57 |
-
line-height: 1.4 !important;
|
| 58 |
-
}
|
| 59 |
-
|
| 60 |
-
.dataframe tr:hover td {
|
| 61 |
-
background-color: #f8f9fa !important;
|
| 62 |
-
transition: background-color 0.2s ease !important;
|
| 63 |
-
}
|
| 64 |
-
|
| 65 |
-
.dataframe tr:nth-child(even) td {
|
| 66 |
-
background-color: #fdfdfd !important;
|
| 67 |
-
}
|
| 68 |
-
|
| 69 |
-
/* Enhanced hyperlinks in table */
|
| 70 |
-
.dataframe a {
|
| 71 |
-
color: #0066cc !important;
|
| 72 |
-
text-decoration: underline !important;
|
| 73 |
-
font-weight: 500 !important;
|
| 74 |
-
transition: all 0.2s ease !important;
|
| 75 |
-
border-radius: 4px !important;
|
| 76 |
-
padding: 2px 6px !important;
|
| 77 |
-
display: inline-block !important;
|
| 78 |
-
}
|
| 79 |
-
|
| 80 |
-
.dataframe a:hover {
|
| 81 |
-
color: #004499 !important;
|
| 82 |
-
background-color: rgba(0, 102, 204, 0.1) !important;
|
| 83 |
-
text-decoration: underline !important;
|
| 84 |
-
transform: translateY(-1px) !important;
|
| 85 |
-
}
|
| 86 |
-
|
| 87 |
-
.dataframe a:visited {
|
| 88 |
-
color: #5a6c7d !important;
|
| 89 |
-
}
|
| 90 |
-
|
| 91 |
-
/* Model name styling (assuming first column contains model names) */
|
| 92 |
-
.dataframe td:first-child {
|
| 93 |
-
font-weight: 600 !important;
|
| 94 |
-
color: #1a202c !important;
|
| 95 |
-
text-align: left !important;
|
| 96 |
-
padding-left: 16px !important;
|
| 97 |
-
}
|
| 98 |
-
|
| 99 |
-
/* Score highlighting */
|
| 100 |
-
.dataframe td:last-child {
|
| 101 |
-
font-weight: 600 !important;
|
| 102 |
-
font-size: 16px !important;
|
| 103 |
-
}
|
| 104 |
-
|
| 105 |
-
#models-to-add-text {
|
| 106 |
-
font-size: 18px !important;
|
| 107 |
-
}
|
| 108 |
-
|
| 109 |
-
#citation-button span {
|
| 110 |
-
font-size: 16px !important;
|
| 111 |
-
}
|
| 112 |
-
|
| 113 |
-
#citation-button textarea {
|
| 114 |
-
font-size: 16px !important;
|
| 115 |
-
}
|
| 116 |
-
|
| 117 |
-
#citation-button > label > button {
|
| 118 |
-
margin: 6px;
|
| 119 |
-
transform: scale(1.3);
|
| 120 |
-
}
|
| 121 |
-
|
| 122 |
-
/* Citation section styling */
|
| 123 |
-
#citation-textbox textarea {
|
| 124 |
-
background: linear-gradient(135deg, #f8f9fa 0%, #e9ecef 100%) !important;
|
| 125 |
-
border: 2px solid #dee2e6 !important;
|
| 126 |
-
border-radius: 12px !important;
|
| 127 |
-
font-family: 'Monaco', 'Menlo', 'Ubuntu Mono', monospace !important;
|
| 128 |
-
font-size: 12px !important;
|
| 129 |
-
padding: 20px !important;
|
| 130 |
-
line-height: 1.6 !important;
|
| 131 |
-
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.1) !important;
|
| 132 |
-
}
|
| 133 |
-
|
| 134 |
-
#citation-textbox label > button {
|
| 135 |
-
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
|
| 136 |
-
border: none !important;
|
| 137 |
-
border-radius: 8px !important;
|
| 138 |
-
color: white !important;
|
| 139 |
-
padding: 8px 16px !important;
|
| 140 |
-
margin: 8px !important;
|
| 141 |
-
transform: scale(1.1);
|
| 142 |
-
transition: transform 0.2s ease;
|
| 143 |
-
}
|
| 144 |
-
|
| 145 |
-
#citation-textbox label > button:hover {
|
| 146 |
-
transform: scale(1.15) !important;
|
| 147 |
-
}
|
| 148 |
-
|
| 149 |
-
#leaderboard-table {
|
| 150 |
-
margin-top: 25px !important;
|
| 151 |
-
}
|
| 152 |
-
|
| 153 |
-
#leaderboard-table-lite {
|
| 154 |
-
margin-top: 25px !important;
|
| 155 |
-
}
|
| 156 |
-
|
| 157 |
-
#search-bar-table-box > div:first-child {
|
| 158 |
-
background: none;
|
| 159 |
-
border: none;
|
| 160 |
-
}
|
| 161 |
-
|
| 162 |
-
#search-bar {
|
| 163 |
-
padding: 0px;
|
| 164 |
-
}
|
| 165 |
-
|
| 166 |
-
/* Enhanced table column widths and responsiveness */
|
| 167 |
-
#leaderboard-table td:nth-child(2),
|
| 168 |
-
#leaderboard-table th:nth-child(2) {
|
| 169 |
-
max-width: 400px;
|
| 170 |
-
overflow: hidden;
|
| 171 |
-
text-overflow: ellipsis;
|
| 172 |
-
white-space: nowrap;
|
| 173 |
-
}
|
| 174 |
-
|
| 175 |
-
/* Responsive table improvements */
|
| 176 |
-
.dataframe {
|
| 177 |
-
width: 100% !important;
|
| 178 |
-
margin: 16px 0 !important;
|
| 179 |
-
}
|
| 180 |
-
|
| 181 |
-
/* Better mobile responsiveness */
|
| 182 |
-
@media (max-width: 768px) {
|
| 183 |
-
.dataframe th,
|
| 184 |
-
.dataframe td {
|
| 185 |
-
padding: 8px 6px !important;
|
| 186 |
-
font-size: 13px !important;
|
| 187 |
-
}
|
| 188 |
-
|
| 189 |
-
.dataframe th {
|
| 190 |
-
font-size: 12px !important;
|
| 191 |
-
}
|
| 192 |
-
|
| 193 |
-
#leaderboard-table td:nth-child(2),
|
| 194 |
-
#leaderboard-table th:nth-child(2) {
|
| 195 |
-
max-width: 200px;
|
| 196 |
-
}
|
| 197 |
-
}
|
| 198 |
-
|
| 199 |
-
/* Rank column special styling */
|
| 200 |
-
.dataframe td:nth-child(1) {
|
| 201 |
-
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
|
| 202 |
-
color: white !important;
|
| 203 |
-
font-weight: 700 !important;
|
| 204 |
-
font-size: 16px !important;
|
| 205 |
-
border-radius: 8px !important;
|
| 206 |
-
margin: 4px !important;
|
| 207 |
-
min-width: 40px !important;
|
| 208 |
-
}
|
| 209 |
-
|
| 210 |
-
.dataframe tr:nth-child(1) td:nth-child(1) {
|
| 211 |
-
background: linear-gradient(135deg, #ffd700 0%, #ffed4e 100%) !important;
|
| 212 |
-
color: #8b4513 !important;
|
| 213 |
-
}
|
| 214 |
-
|
| 215 |
-
.dataframe tr:nth-child(2) td:nth-child(1) {
|
| 216 |
-
background: linear-gradient(135deg, #c0c0c0 0%, #e8e8e8 100%) !important;
|
| 217 |
-
color: #4a4a4a !important;
|
| 218 |
-
}
|
| 219 |
-
|
| 220 |
-
.dataframe tr:nth-child(3) td:nth-child(1) {
|
| 221 |
-
background: linear-gradient(135deg, #cd7f32 0%, #daa520 100%) !important;
|
| 222 |
-
color: white !important;
|
| 223 |
-
}
|
| 224 |
-
|
| 225 |
-
.tab-buttons button {
|
| 226 |
-
font-size: 20px;
|
| 227 |
-
}
|
| 228 |
-
|
| 229 |
-
#scale-logo {
|
| 230 |
-
border-style: none !important;
|
| 231 |
-
box-shadow: none;
|
| 232 |
-
display: block;
|
| 233 |
-
margin-left: auto;
|
| 234 |
-
margin-right: auto;
|
| 235 |
-
max-width: 600px;
|
| 236 |
-
}
|
| 237 |
-
|
| 238 |
-
#scale-logo .download {
|
| 239 |
-
display: none;
|
| 240 |
-
}
|
| 241 |
-
#filter_type{
|
| 242 |
-
border: 0;
|
| 243 |
-
padding-left: 0;
|
| 244 |
-
padding-top: 0;
|
| 245 |
-
}
|
| 246 |
-
#filter_type label {
|
| 247 |
-
display: flex;
|
| 248 |
-
}
|
| 249 |
-
#filter_type label > span{
|
| 250 |
-
margin-top: var(--spacing-lg);
|
| 251 |
-
margin-right: 0.5em;
|
| 252 |
-
}
|
| 253 |
-
#filter_type label > .wrap{
|
| 254 |
-
width: 103px;
|
| 255 |
-
}
|
| 256 |
-
#filter_type label > .wrap .wrap-inner{
|
| 257 |
-
padding: 2px;
|
| 258 |
-
}
|
| 259 |
-
#filter_type label > .wrap .wrap-inner input{
|
| 260 |
-
width: 1px
|
| 261 |
-
}
|
| 262 |
-
#filter-columns-type{
|
| 263 |
-
border:0;
|
| 264 |
-
padding:0.5;
|
| 265 |
-
}
|
| 266 |
-
#filter-columns-size{
|
| 267 |
-
border:0;
|
| 268 |
-
padding:0.5;
|
| 269 |
-
}
|
| 270 |
-
#box-filter > .form{
|
| 271 |
-
border: 0
|
| 272 |
-
}
|
| 273 |
-
"""
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
get_window_url_params = """
|
| 277 |
-
function(url_params) {
|
| 278 |
-
const params = new URLSearchParams(window.location.search);
|
| 279 |
-
url_params = Object.fromEntries(params);
|
| 280 |
-
return url_params;
|
| 281 |
-
}
|
| 282 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
display/formatting.py
DELETED
|
@@ -1,27 +0,0 @@
|
|
| 1 |
-
def model_hyperlink(link, model_name):
|
| 2 |
-
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
def make_clickable_model(model_name):
|
| 6 |
-
link = f"https://huggingface.co/{model_name}"
|
| 7 |
-
return model_hyperlink(link, model_name)
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
def styled_error(error):
|
| 11 |
-
return f"<p style='color: red; font-size: 20px; text-align: center;'>{error}</p>"
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
def styled_warning(warn):
|
| 15 |
-
return f"<p style='color: orange; font-size: 20px; text-align: center;'>{warn}</p>"
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
def styled_message(message):
|
| 19 |
-
return f"<p style='color: green; font-size: 20px; text-align: center;'>{message}</p>"
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
def has_no_nan_values(df, columns):
|
| 23 |
-
return df[columns].notna().all(axis=1)
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
def has_nan_values(df, columns):
|
| 27 |
-
return df[columns].isna().any(axis=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
display/utils.py
DELETED
|
@@ -1,110 +0,0 @@
|
|
| 1 |
-
from dataclasses import dataclass, make_dataclass
|
| 2 |
-
from enum import Enum
|
| 3 |
-
|
| 4 |
-
import pandas as pd
|
| 5 |
-
|
| 6 |
-
from src.about import Tasks
|
| 7 |
-
|
| 8 |
-
def fields(raw_class):
|
| 9 |
-
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
# These classes are for user facing column names,
|
| 13 |
-
# to avoid having to change them all around the code
|
| 14 |
-
# when a modif is needed
|
| 15 |
-
@dataclass
|
| 16 |
-
class ColumnContent:
|
| 17 |
-
name: str
|
| 18 |
-
type: str
|
| 19 |
-
displayed_by_default: bool
|
| 20 |
-
hidden: bool = False
|
| 21 |
-
never_hidden: bool = False
|
| 22 |
-
|
| 23 |
-
## Leaderboard columns
|
| 24 |
-
auto_eval_column_dict = []
|
| 25 |
-
# Init
|
| 26 |
-
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
|
| 27 |
-
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
| 28 |
-
#Scores
|
| 29 |
-
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
|
| 30 |
-
for task in Tasks:
|
| 31 |
-
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
|
| 32 |
-
# Model information
|
| 33 |
-
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
|
| 34 |
-
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
|
| 35 |
-
auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
|
| 36 |
-
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
|
| 37 |
-
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
|
| 38 |
-
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
|
| 39 |
-
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
|
| 40 |
-
auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
|
| 41 |
-
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
|
| 42 |
-
|
| 43 |
-
# We use make dataclass to dynamically fill the scores from Tasks
|
| 44 |
-
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
| 45 |
-
|
| 46 |
-
## For the queue columns in the submission tab
|
| 47 |
-
@dataclass(frozen=True)
|
| 48 |
-
class EvalQueueColumn: # Queue column
|
| 49 |
-
model = ColumnContent("model", "markdown", True)
|
| 50 |
-
revision = ColumnContent("revision", "str", True)
|
| 51 |
-
private = ColumnContent("private", "bool", True)
|
| 52 |
-
precision = ColumnContent("precision", "str", True)
|
| 53 |
-
weight_type = ColumnContent("weight_type", "str", "Original")
|
| 54 |
-
status = ColumnContent("status", "str", True)
|
| 55 |
-
|
| 56 |
-
## All the model information that we might need
|
| 57 |
-
@dataclass
|
| 58 |
-
class ModelDetails:
|
| 59 |
-
name: str
|
| 60 |
-
display_name: str = ""
|
| 61 |
-
symbol: str = "" # emoji
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
class ModelType(Enum):
|
| 65 |
-
PT = ModelDetails(name="pretrained", symbol="🟢")
|
| 66 |
-
FT = ModelDetails(name="fine-tuned", symbol="🔶")
|
| 67 |
-
IFT = ModelDetails(name="instruction-tuned", symbol="⭕")
|
| 68 |
-
RL = ModelDetails(name="RL-tuned", symbol="🟦")
|
| 69 |
-
Unknown = ModelDetails(name="", symbol="?")
|
| 70 |
-
|
| 71 |
-
def to_str(self, separator=" "):
|
| 72 |
-
return f"{self.value.symbol}{separator}{self.value.name}"
|
| 73 |
-
|
| 74 |
-
@staticmethod
|
| 75 |
-
def from_str(type):
|
| 76 |
-
if "fine-tuned" in type or "🔶" in type:
|
| 77 |
-
return ModelType.FT
|
| 78 |
-
if "pretrained" in type or "🟢" in type:
|
| 79 |
-
return ModelType.PT
|
| 80 |
-
if "RL-tuned" in type or "🟦" in type:
|
| 81 |
-
return ModelType.RL
|
| 82 |
-
if "instruction-tuned" in type or "⭕" in type:
|
| 83 |
-
return ModelType.IFT
|
| 84 |
-
return ModelType.Unknown
|
| 85 |
-
|
| 86 |
-
class WeightType(Enum):
|
| 87 |
-
Adapter = ModelDetails("Adapter")
|
| 88 |
-
Original = ModelDetails("Original")
|
| 89 |
-
Delta = ModelDetails("Delta")
|
| 90 |
-
|
| 91 |
-
class Precision(Enum):
|
| 92 |
-
float16 = ModelDetails("float16")
|
| 93 |
-
bfloat16 = ModelDetails("bfloat16")
|
| 94 |
-
Unknown = ModelDetails("?")
|
| 95 |
-
|
| 96 |
-
def from_str(precision):
|
| 97 |
-
if precision in ["torch.float16", "float16"]:
|
| 98 |
-
return Precision.float16
|
| 99 |
-
if precision in ["torch.bfloat16", "bfloat16"]:
|
| 100 |
-
return Precision.bfloat16
|
| 101 |
-
return Precision.Unknown
|
| 102 |
-
|
| 103 |
-
# Column selection
|
| 104 |
-
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
|
| 105 |
-
|
| 106 |
-
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
|
| 107 |
-
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
|
| 108 |
-
|
| 109 |
-
BENCHMARK_COLS = [t.value.col_name for t in Tasks]
|
| 110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|