Spaces:
Runtime error
Runtime error
| import transformers | |
| import gradio as gr | |
| import tensorflow as tf | |
| from official.nlp import optimization # to create AdamW optimizer | |
| MODEL_DIRECTORY = 'save/modelV1' | |
| PRETRAINED_MODEL_NAME = 'dbmdz/bert-base-german-cased' | |
| TOKENIZER = transformers.BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME) | |
| MAX_SEQUENCE_LENGTH = 256 | |
| EPOCHS = 2 | |
| OPTIMIZER = 'adamw' | |
| INIT_LR = 3e-5 | |
| LOSS = tf.keras.losses.BinaryCrossentropy(from_logits=False) | |
| METRICS = tf.metrics.BinaryAccuracy() | |
| def compile_model(model): | |
| steps_per_epoch = 10 | |
| num_train_steps = steps_per_epoch * EPOCHS | |
| num_warmup_steps = int(0.1*num_train_steps) | |
| optimizer = optimization.create_optimizer( | |
| init_lr=INIT_LR, | |
| num_train_steps=steps_per_epoch, | |
| num_warmup_steps=num_warmup_steps, | |
| optimizer_type=OPTIMIZER | |
| ) | |
| model.compile(optimizer=optimizer, loss=LOSS, metrics=[METRICS]) | |
| return model | |
| hs_detection_model = tf.keras.models.load_model(MODEL_DIRECTORY, compile=False) #tf.keras.models.load_model('save/kerasmodel/model.h5') #tf.saved_model.load('save/model') #tf.keras.models.load_model('save/model') | |
| compile_model(hs_detection_model) | |
| def encode(sentences): | |
| return TOKENIZER.batch_encode_plus( | |
| sentences, | |
| max_length=MAX_SEQUENCE_LENGTH, # set the length of the sequences | |
| add_special_tokens=True, # add [CLS] and [SEP] tokens | |
| return_attention_mask=True, | |
| return_token_type_ids=False, # not needed for this type of ML task | |
| pad_to_max_length=True, # add 0 pad tokens to the sequences less than max_length | |
| return_tensors='tf' | |
| ) | |
| def inference(sentence): | |
| print(sentence) | |
| encoded_sentence = encode([sentence]) | |
| print(encoded_sentence) | |
| predicition = hs_detection_model.predict(encoded_sentence.values()) | |
| print(predicition) | |
| return predicition | |
| iface = gr.Interface(fn=inference, inputs="text", outputs="text") #, live=True) | |
| iface.launch() |