cohere-ui / app.py
Spestly's picture
Update app.py
2a88707 verified
raw
history blame
6.11 kB
import streamlit as st
import cohere
st.set_page_config(page_title="Cohere Chat Interface", layout="wide")
MODEL_PFPS = {
"command-a-03-2025": "/media/pfp/cohere-pfp.png",
"command-r7b-12-2024": "/media/pfp/cohere-pfp.png",
"command-r-plus-04-2024": "/media/pfp/cohere-pfp.png",
"command-r-plus": "/media/pfp/cohere-pfp.png",
"command-r-08-2024": "/media/pfp/cohere-pfp.png",
"command-r-03-2024": "/media/pfp/cohere-pfp.png",
"command-r": "/media/pfp/cohere-pfp.png",
"command": "/media/pfp/cohere-pfp.png",
"command-nightly": "/media/pfp/cohere-pfp.png",
"command-light": "/media/pfp/cohere-pfp.png",
"command-light-nightly": "/media/pfp/cohere-pfp.png"
}
USER_PFP = "https://example.com/user-default.png"
MODEL_INFO = {
"command-a-03-2025": {
"description": "Command A is our most performant model to date, excelling at tool use, agents, retrieval augmented generation (RAG), and multilingual use cases. Command A has a context length of 256K, only requires two GPUs to run, and has 150% higher throughput compared to Command R+ 08-2024.",
"context_window": "256K tokens",
"output_tokens": "8K tokens"
},
"command-r7b-12-2024": {
"description": "command-r7b-12-2024 is a small, fast update delivered in December 2024. It excels at RAG, tool use, agents, and similar tasks requiring complex reasoning and multiple steps.",
"context_window": "128K tokens",
"output_tokens": "4K tokens"
},
"command-r-plus-04-2024": {
"description": "Command R+ is an instruction-following conversational model that performs language tasks at a higher quality, more reliably, and with a longer context than previous models. It is best suited for complex RAG workflows and multi-step tool use.",
"context_window": "128K tokens",
"output_tokens": "4K tokens"
},
"command-r-plus": {
"description": "command-r-plus is an alias for command-r-plus-04-2024, so if you use command-r-plus in the API, that's the model you're pointing to.",
"context_window": "128K tokens",
"output_tokens": "4K tokens"
},
"command-r-08-2024": {
"description": "command-r-08-2024 is an update of the Command R model, delivered in August 2024.",
"context_window": "128K tokens",
"output_tokens": "4K tokens"
},
"command-r-03-2024": {
"description": "Command R is an instruction-following conversational model that performs language tasks at a higher quality, more reliably, and with a longer context than previous models. It can be used for complex workflows like code generation, retrieval augmented generation (RAG), tool use, and agents.",
"context_window": "128K tokens",
"output_tokens": "4K tokens"
},
"command-r": {
"description": "command-r is an alias for command-r-03-2024, so if you use command-r in the API, that's the model you're pointing to.",
"context_window": "128K tokens",
"output_tokens": "4K tokens"
},
"command": {
"description": "An instruction-following conversational model that performs language tasks with high quality, more reliably and with a longer context than our base generative models.",
"context_window": "4K tokens",
"output_tokens": "4K tokens"
},
"command-nightly": {
"description": "Nightly version of command - experimental and unstable. Not recommended for production use.",
"context_window": "128K tokens",
"output_tokens": "4K tokens"
},
"command-light": {
"description": "Smaller, faster version of command with similar capabilities.",
"context_window": "4K tokens",
"output_tokens": "4K tokens"
},
"command-light-nightly": {
"description": "Nightly version of command-light - experimental and unstable. Not for production use.",
"context_window": "128K tokens",
"output_tokens": "4K tokens"
}
}
with st.sidebar:
st.title("Configuration")
api_key = st.text_input("Cohere API Key", type="password")
selected_model = st.selectbox(
"Select Model",
options=list(MODEL_INFO.keys()),
format_func=lambda x: x.upper()
)
st.divider()
st.subheader("Model Details")
st.image(MODEL_PFPS[selected_model], width=80)
st.markdown(f"**{selected_model}**")
st.markdown(MODEL_INFO[selected_model]["description"])
st.markdown(f"**Context Window:** {MODEL_INFO[selected_model]['context_window']}")
st.markdown(f"**Max Output:** {MODEL_INFO[selected_model]['output_tokens']}")
st.title(f"Chat with {selected_model.upper()}")
st.image(MODEL_PFPS[selected_model], width=50)
if "messages" not in st.session_state:
st.session_state.messages = []
for message in st.session_state.messages:
avatar = USER_PFP if message["role"] == "user" else MODEL_PFPS[selected_model]
with st.chat_message(message["role"], avatar=avatar):
st.markdown(message["content"])
if prompt := st.chat_input("Type your message..."):
if not api_key:
st.error("API key required - enter in sidebar")
st.stop()
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user", avatar=USER_PFP):
st.markdown(prompt)
try:
co = cohere.ClientV2(api_key)
with st.chat_message("assistant", avatar=MODEL_PFPS[selected_model]):
response = co.chat(
model=selected_model,
messages=st.session_state.messages
)
if hasattr(response, 'text'):
full_response = response.text
else:
full_response = "Error: Unexpected API response format"
st.markdown(full_response)
st.session_state.messages.append({"role": "assistant", "content": full_response})
except cohere.CohereError as e:
st.error(f"Cohere API Error: {str(e)}")
except Exception as e:
st.error(f"General Error: {str(e)}")