import streamlit as st import cohere import os import base64 st.set_page_config(page_title="Cohere Chat", layout="wide") AI_PFP = "media/pfps/cohere-pfp.png" USER_PFP = "media/pfps/user-pfp.jpg" BANNER = "media/banner.png" model_info = { "c4ai-aya-expanse-8b": {"description": "Aya Expanse is a highly performant 8B multilingual model, designed to rival monolingual performance through innovations in instruction tuning with data arbitrage, preference training, and model merging. Serves 23 languages.", "context": "4K", "output": "4K"}, "c4ai-aya-expanse-32b": {"description": "Aya Expanse is a highly performant 32B multilingual model, designed to rival monolingual performance through innovations in instruction tuning with data arbitrage, preference training, and model merging. Serves 23 languages.", "context": "128K", "output": "4K"}, "command-a-03-2025": {"description": "Command A is our most performant model to date, excelling at tool use, agents, retrieval augmented generation (RAG), and multilingual use cases. Command A has a context length of 256K, only requires two GPUs to run, and has 150% higher throughput compared to Command R+ 08-2024.", "context": "256K", "output": "8K"}, "command-r7b-12-2024": {"description": "command-r7b-12-2024 is a small, fast update delivered in December 2024. It excels at RAG, tool use, agents, and similar tasks requiring complex reasoning and multiple steps.", "context": "128K", "output": "4K"}, "command-r-plus-04-2024": {"description": "Command R+ is an instruction-following conversational model that performs language tasks at a higher quality, more reliably, and with a longer context than previous models. It is best suited for complex RAG workflows and multi-step tool use.", "context": "128K", "output": "4K"}, "command-r-plus": {"description": "command-r-plus is an alias for command-r-plus-04-2024, so if you use command-r-plus in the API, that's the model you're pointing to.", "context": "128K", "output": "4K"}, "command-r-08-2024": {"description": "Updated Command R model from August 2024.", "context": "128K", "output": "4K"}, "command-r-03-2024": {"description": "Instruction-following model for code generation, RAG, and agents.", "context": "128K", "output": "4K"}, "command-r": {"description": "Alias for command-r-03-2024.", "context": "128K", "output": "4K"}, "command": {"description": "Conversational model with long context capabilities.", "context": "4K", "output": "4K"}, "command-nightly": {"description": "Experimental nightly build (not for production).", "context": "128K", "output": "4K"}, "command-light": {"description": "Faster lightweight version of command.", "context": "4K", "output": "4K"}, "command-light-nightly": {"description": "Experimental nightly build of command-light.", "context": "128K", "output": "4K"}, "c4ai-aya-vision-8b": {"description": "Aya Vision is an 8B vision-language model enabling image-based chat and analysis.", "context": "4K", "output": "4K"}, "c4ai-aya-vision-32b": {"description": "Aya Vision is a 32B vision-language model with advanced image understanding and reasoning.", "context": "128K", "output": "4K"} } with st.sidebar: st.image(BANNER, use_container_width=True) st.title("Settings") api_key = st.text_input("Cohere API Key", type="password") selected_model = st.selectbox("Model", options=list(model_info.keys())) if selected_model.startswith("c4ai-aya-vision"): uploaded = st.file_uploader("Upload image", type=["png","jpg","jpeg"]) if uploaded: data = uploaded.read() session_image = base64.b64encode(data).decode('utf-8') st.session_state.image_data = session_image if st.button("Clear Chat"): st.session_state.messages = [] st.session_state.first_message_sent = False st.session_state.image_data = None st.rerun() st.divider() st.subheader(selected_model) st.markdown(model_info[selected_model]["description"]) st.caption(f"Context: {model_info[selected_model]['context']}") st.caption(f"Output: {model_info[selected_model]['output']}") st.markdown("Powered by Cohere's API") if "messages" not in st.session_state: st.session_state.messages = [] if "first_message_sent" not in st.session_state: st.session_state.first_message_sent = False if "image_data" not in st.session_state: st.session_state.image_data = None if not st.session_state.first_message_sent: st.markdown("

How can Cohere help you today?

", unsafe_allow_html=True) for msg in st.session_state.messages: with st.chat_message(msg["role"], avatar=USER_PFP if msg["role"]=="user" else AI_PFP): content = msg["content"] if isinstance(content, list): for item in content: if item.get("type")=="text": st.markdown(item.get("text")) if item.get("type")=="image_url": st.image(item.get("image_url").get("url")) else: st.markdown(content) if prompt := st.chat_input("Message..."): if not api_key: st.error("API key required") st.stop() st.session_state.first_message_sent = True st.session_state.messages.append({"role":"user","content":prompt}) with st.chat_message("user", avatar=USER_PFP): st.markdown(prompt) co = cohere.ClientV2(api_key) content = [{"type":"text","text":prompt}] if st.session_state.image_data and selected_model.startswith("c4ai-aya-vision"): data_url = f"data:image/jpeg;base64,{st.session_state.image_data}" content.append({"type":"image_url","image_url":{"url":data_url}}) response = co.chat(model=selected_model, messages=[*st.session_state.messages, {"role":"user","content":content}], temperature=0.3) items = response.message.content reply = "".join([getattr(i,'text','') for i in items]) with st.chat_message("assistant", avatar=AI_PFP): st.markdown(reply) st.session_state.messages.append({"role":"assistant","content":items})