Corey Morris
Update app.py and requirements.txt so that it will work with huggingface streamlit with the pandas 1.x version
ba99486
| import streamlit as st | |
| import pandas as pd | |
| import os | |
| import fnmatch | |
| import json | |
| import plotly.express as px | |
| class MultiURLData: | |
| def __init__(self): | |
| self.data = self.process_data() | |
| def process_data(self): | |
| dataframes = [] | |
| def find_files(directory, pattern): | |
| for root, dirs, files in os.walk(directory): | |
| for basename in files: | |
| if fnmatch.fnmatch(basename, pattern): | |
| filename = os.path.join(root, basename) | |
| yield filename | |
| for filename in find_files('results', 'results*.json'): | |
| model_name = filename.split('/')[2] | |
| with open(filename) as f: | |
| data = json.load(f) | |
| df = pd.DataFrame(data['results']).T | |
| df = df.rename(columns={'acc': model_name}) | |
| df.index = df.index.str.replace('hendrycksTest-', '') | |
| df.index = df.index.str.replace('harness\\|', '') | |
| dataframes.append(df[[model_name]]) | |
| data = pd.concat(dataframes, axis=1) | |
| data = data.transpose() | |
| data['Model Name'] = data.index | |
| cols = data.columns.tolist() | |
| cols = cols[-1:] + cols[:-1] | |
| data = data[cols] | |
| return data | |
| def get_data(self, selected_models): | |
| filtered_data = self.data[self.data['Model Name'].isin(selected_models)] | |
| return filtered_data | |
| data_provider = MultiURLData() | |
| st.title('Leaderboard') | |
| # TODO actually use these checkboxes as filters | |
| ## Desired behavior | |
| ## model and column selection is hidden by default | |
| ## when the user clicks the checkbox, the model and column selection appears | |
| filters = st.checkbox('Add filters') | |
| # Create checkboxes for each column | |
| selected_columns = st.multiselect( | |
| 'Select Columns', | |
| data_provider.data.columns.tolist(), | |
| default=data_provider.data.columns.tolist() | |
| ) | |
| selected_models = st.multiselect( | |
| 'Select Models', | |
| data_provider.data['Model Name'].tolist(), | |
| default=data_provider.data['Model Name'].tolist() | |
| ) | |
| # Get the filtered data and display it in a table | |
| filtered_data = data_provider.get_data(selected_models) | |
| st.dataframe(filtered_data) | |
| # Create a plot with new data | |
| df = pd.DataFrame({ | |
| 'Model': list(filtered_data['Model Name']), | |
| # use debug to troubheshoot error | |
| 'arc:challenge|25': list(filtered_data['arc:challenge|25']), | |
| 'moral_scenarios|5': list(filtered_data['moral_scenarios|5']), | |
| }) | |
| # Calculate color column | |
| df['color'] = 'purple' | |
| df.loc[df['moral_scenarios|5'] < df['arc:challenge|25'], 'color'] = 'red' | |
| df.loc[df['moral_scenarios|5'] > df['arc:challenge|25'], 'color'] = 'blue' | |
| # Create the scatter plot | |
| fig = px.scatter(df, x='arc:challenge|25', y='moral_scenarios|5', color='color', hover_data=['Model']) | |
| fig.update_layout(showlegend=False, # hide legend | |
| xaxis = dict(autorange="reversed"), # reverse X-axis | |
| yaxis = dict(autorange="reversed")) # reverse Y-axis | |
| # Show the plot in Streamlit | |
| st.plotly_chart(fig) | |