Spaces:
Runtime error
Runtime error
| import pandas as pd | |
| import os | |
| import fnmatch | |
| import json | |
| import re | |
| import numpy as np | |
| import logging | |
| logging.basicConfig(filename='error_log.log', level=logging.ERROR) | |
| class ResultDataProcessor: | |
| def __init__(self, directory='results', pattern='results*.json'): | |
| self.directory = directory | |
| self.pattern = pattern | |
| self.data = self.process_data() | |
| self.ranked_data = self.rank_data() | |
| def _find_files(self, directory='results', pattern='results*.json'): | |
| matching_files = {} | |
| for root, dirs, files in os.walk(directory): | |
| for basename in files: | |
| if fnmatch.fnmatch(basename, pattern): | |
| filename = os.path.join(root, basename) | |
| matching_files[root] = filename | |
| # TODO decide on removing this since I am catching the error when processing the file | |
| matching_files = {key: value for key, value in matching_files.items() if 'gpt-j-6b' not in key} | |
| matching_files = list(matching_files.values()) | |
| return matching_files | |
| def _read_and_transform_data(self, filename): | |
| with open(filename) as f: | |
| data = json.load(f) | |
| df = pd.DataFrame(data['results']).T | |
| return df | |
| def _cleanup_dataframe(self, df, model_name): | |
| df = df.rename(columns={'acc': model_name}) | |
| df.index = (df.index.str.replace('hendrycksTest-', 'MMLU_', regex=True) | |
| .str.replace('harness\|', '', regex=True) | |
| .str.replace('\|5', '', regex=True)) | |
| return df[[model_name]] | |
| def _extract_mc1(self, df, model_name): | |
| df = df.rename(columns={'mc1': model_name}) | |
| # rename row harness|truthfulqa:mc|0 to truthfulqa:mc1 | |
| df.index = (df.index.str.replace('mc\|0', 'mc1', regex=True)) | |
| # just return the harness|truthfulqa:mc1 row | |
| df = df.loc[['harness|truthfulqa:mc1']] | |
| return df[[model_name]] | |
| def _extract_mc2(self, df, model_name): | |
| # rename row harness|truthfulqa:mc|0 to truthfulqa:mc2 | |
| df = df.rename(columns={'mc2': model_name}) | |
| df.index = (df.index.str.replace('mc\|0', 'mc2', regex=True)) | |
| df = df.loc[['harness|truthfulqa:mc2']] | |
| return df[[model_name]] | |
| # remove extreme outliers from column harness|truthfulqa:mc1 | |
| def _remove_mc1_outliers(self, df): | |
| mc1 = df['harness|truthfulqa:mc1'] | |
| # Identify the outliers | |
| # outliers_condition = mc1 > mc1.quantile(.95) | |
| outliers_condition = mc1 == 1.0 | |
| # Replace the outliers with NaN | |
| df.loc[outliers_condition, 'harness|truthfulqa:mc1'] = np.nan | |
| return df | |
| def _extract_parameters(model_name): | |
| """ | |
| Function to extract parameters from model name. | |
| It handles names with 'b/B' for billions and 'm/M' for millions. | |
| """ | |
| # pattern to match a number followed by 'b' (representing billions) or 'm' (representing millions) | |
| pattern = re.compile(r'(\d+\.?\d*)([bBmM])') | |
| match = pattern.search(model_name) | |
| if match: | |
| num, magnitude = match.groups() | |
| num = float(num) | |
| # convert millions to billions | |
| if magnitude.lower() == 'm': | |
| num /= 1000 | |
| return num | |
| # return NaN if no match | |
| return np.nan | |
| def process_data(self): | |
| full_model_name_count = 0 | |
| full_model_names = [] | |
| dataframes = [] | |
| organization_names = [] | |
| for filename in self._find_files(self.directory, self.pattern): | |
| # try: | |
| raw_data = self._read_and_transform_data(filename) | |
| split_path = filename.split('/') | |
| model_name = split_path[2] | |
| organization_name = split_path[1] | |
| full_model_name = f'{organization_name}/{model_name}' | |
| full_model_name_count += 1 | |
| # print count every 100 models | |
| if full_model_name_count % 100 == 0: | |
| print(full_model_name_count) | |
| cleaned_data = self._cleanup_dataframe(raw_data, model_name) | |
| # mc1 = self._extract_mc1(raw_data, full_model_name) | |
| # mc2 = self._extract_mc2(raw_data, full_model_name) | |
| # cleaned_data = pd.concat([cleaned_data, mc1]) | |
| # cleaned_data = pd.concat([cleaned_data, mc2]) | |
| organization_names.append(organization_name) | |
| full_model_names.append(full_model_name) | |
| dataframes.append(cleaned_data) | |
| # except Exception as e: | |
| # # logging.error(f'Error processing {filename}') | |
| # # logging.error(f'The error is: {e}') | |
| # print(f'Error processing {filename}') | |
| # print(f'The error is: {e}') | |
| # continue | |
| data = pd.concat(dataframes, axis=1).transpose() | |
| # Add organization column | |
| # data['organization'] = organization_names | |
| print("full_model_names") | |
| print(len(full_model_names)) | |
| print("organization_names") | |
| print(len(organization_name)) | |
| data['full_model_name'] = full_model_names | |
| # Add Model Name and rearrange columns | |
| data['Model Name'] = data.index | |
| cols = data.columns.tolist() | |
| cols = cols[-1:] + cols[:-1] | |
| data = data[cols] | |
| # Remove the 'Model Name' column | |
| data = data.drop(columns=['Model Name']) | |
| # Add average column | |
| data['MMLU_average'] = data.filter(regex='MMLU').mean(axis=1) | |
| # Reorder columns to move 'MMLU_average' to the third position | |
| cols = data.columns.tolist() | |
| cols = cols[:2] + cols[-1:] + cols[2:-1] | |
| data = data[cols] | |
| # Add parameter count column using extract_parameters function | |
| data['Parameters'] = data.index.to_series().apply(self._extract_parameters) | |
| # move the parameters column to the front of the dataframe | |
| cols = data.columns.tolist() | |
| cols = cols[-1:] + cols[:-1] | |
| print(cols) | |
| data = data[cols] | |
| new_columns = ['full_model_name'] + [col for col in data.columns if col != 'full_model_name'] | |
| data = data.reindex(columns=new_columns) | |
| # # Reorder columns to move 'organization' to the second position | |
| # cols = data.columns.tolist() | |
| # cols = cols[-1:] + cols[:-1] | |
| # data = data[cols] | |
| # remove extreme outliers from column harness|truthfulqa:mc1 | |
| # data = self._remove_mc1_outliers(data) | |
| data = self.manual_removal_of_models(data) | |
| # drop rows if MMLU_abstract_algebra is NaN | |
| data = data.dropna(subset=['MMLU_abstract_algebra']) | |
| # add a URL column that takes https://huggingface.co/ + full_model_name | |
| data['URL'] = 'https://huggingface.co/' + data['full_model_name'] | |
| new_columns = ['URL'] + [col for col in data.columns if col != 'URL'] | |
| data = data.reindex(columns=new_columns) | |
| # drop columns drop|3 gsm8k and winogrande | |
| data = data.drop(columns=['drop|3', 'gsm8k', 'winogrande']) | |
| # # Drop specific columns | |
| data = data.drop(columns=['all', 'truthfulqa:mc|0']) | |
| # save to csv with the current date as part of the filename | |
| data.to_csv(f'processed_data_{pd.Timestamp.now().strftime("%Y-%m-%d")}.csv') | |
| return data | |
| def manual_removal_of_models(self, df): | |
| # remove models verified to be trained on evaluation data | |
| # load the list of models | |
| with open('contaminated_models.txt') as f: | |
| contaminated_models = f.read().splitlines() | |
| # remove the models from the dataframe | |
| df = df[~df.index.isin(contaminated_models)] | |
| return df | |
| def rank_data(self): | |
| # add rank for each column to the dataframe | |
| # copy the data dataframe to avoid modifying the original dataframe | |
| rank_data = self.data.copy() | |
| for col in list(rank_data.columns): | |
| rank_data[col + "_rank"] = rank_data[col].rank(ascending=False, method='min') | |
| return rank_data | |
| def get_data(self, selected_models): | |
| return self.data[self.data.index.isin(selected_models)] | |