Corey Morris
commited on
Commit
·
ee5ac8e
1
Parent(s):
843a5ef
Refactor. Extracted methods.
Browse files- result_data_processor.py +39 -46
result_data_processor.py
CHANGED
|
@@ -4,65 +4,58 @@ import fnmatch
|
|
| 4 |
import json
|
| 5 |
|
| 6 |
class ResultDataProcessor:
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
| 8 |
self.data = self.process_data()
|
| 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
def process_data(self):
|
| 11 |
-
dataframes = []
|
| 12 |
-
|
| 13 |
-
def find_files(directory, pattern):
|
| 14 |
-
for root, dirs, files in os.walk(directory):
|
| 15 |
-
for basename in files:
|
| 16 |
-
if fnmatch.fnmatch(basename, pattern):
|
| 17 |
-
filename = os.path.join(root, basename)
|
| 18 |
-
yield filename
|
| 19 |
-
|
| 20 |
-
for filename in find_files('results', 'results*.json'):
|
| 21 |
-
model_name = filename.split('/')[2]
|
| 22 |
-
with open(filename) as f:
|
| 23 |
-
data = json.load(f)
|
| 24 |
-
df = pd.DataFrame(data['results']).T
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
# data cleanup
|
| 28 |
-
df = df.rename(columns={'acc': model_name})
|
| 29 |
-
# Replace 'hendrycksTest-' with a more descriptive column name
|
| 30 |
-
df.index = df.index.str.replace('hendrycksTest-', 'MMLU_', regex=True)
|
| 31 |
-
df.index = df.index.str.replace('harness\|', '', regex=True)
|
| 32 |
-
# remove |5 from the index
|
| 33 |
-
df.index = df.index.str.replace('\|5', '', regex=True)
|
| 34 |
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
data = pd.concat(dataframes, axis=1)
|
| 39 |
-
|
| 40 |
-
data = data.transpose()
|
| 41 |
data['Model Name'] = data.index
|
| 42 |
cols = data.columns.tolist()
|
| 43 |
cols = cols[-1:] + cols[:-1]
|
| 44 |
data = data[cols]
|
| 45 |
|
| 46 |
-
#
|
| 47 |
-
data = data.drop(['Model Name']
|
| 48 |
-
|
| 49 |
-
#
|
| 50 |
-
data = data.drop(['all'], axis=1)
|
| 51 |
-
|
| 52 |
-
# remove the truthfulqa:mc|0 column
|
| 53 |
-
data = data.drop(['truthfulqa:mc|0'], axis=1)
|
| 54 |
-
|
| 55 |
-
# create a new column that averages the results from each of the columns with a name that start with MMLU
|
| 56 |
data['MMLU_average'] = data.filter(regex='MMLU').mean(axis=1)
|
| 57 |
|
| 58 |
-
# move
|
| 59 |
cols = data.columns.tolist()
|
| 60 |
cols = cols[:2] + cols[-1:] + cols[2:-1]
|
| 61 |
data = data[cols]
|
| 62 |
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
def get_data(self, selected_models):
|
| 67 |
-
|
| 68 |
-
return filtered_data
|
|
|
|
| 4 |
import json
|
| 5 |
|
| 6 |
class ResultDataProcessor:
|
| 7 |
+
|
| 8 |
+
def __init__(self, directory='results', pattern='results*.json'):
|
| 9 |
+
self.directory = directory
|
| 10 |
+
self.pattern = pattern
|
| 11 |
self.data = self.process_data()
|
| 12 |
|
| 13 |
+
@staticmethod
|
| 14 |
+
def _find_files(directory, pattern):
|
| 15 |
+
for root, dirs, files in os.walk(directory):
|
| 16 |
+
for basename in files:
|
| 17 |
+
if fnmatch.fnmatch(basename, pattern):
|
| 18 |
+
filename = os.path.join(root, basename)
|
| 19 |
+
yield filename
|
| 20 |
+
|
| 21 |
+
def _read_and_transform_data(self, filename):
|
| 22 |
+
with open(filename) as f:
|
| 23 |
+
data = json.load(f)
|
| 24 |
+
df = pd.DataFrame(data['results']).T
|
| 25 |
+
return df
|
| 26 |
+
|
| 27 |
+
def _cleanup_dataframe(self, df, model_name):
|
| 28 |
+
df = df.rename(columns={'acc': model_name})
|
| 29 |
+
df.index = (df.index.str.replace('hendrycksTest-', 'MMLU_', regex=True)
|
| 30 |
+
.str.replace('harness\|', '', regex=True)
|
| 31 |
+
.str.replace('\|5', '', regex=True))
|
| 32 |
+
return df[[model_name]]
|
| 33 |
+
|
| 34 |
def process_data(self):
|
| 35 |
+
dataframes = [self._cleanup_dataframe(self._read_and_transform_data(filename), filename.split('/')[2])
|
| 36 |
+
for filename in self._find_files(self.directory, self.pattern)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
+
data = pd.concat(dataframes, axis=1).transpose()
|
| 39 |
+
|
| 40 |
+
# Add Model Name and rearrange columns
|
|
|
|
|
|
|
|
|
|
| 41 |
data['Model Name'] = data.index
|
| 42 |
cols = data.columns.tolist()
|
| 43 |
cols = cols[-1:] + cols[:-1]
|
| 44 |
data = data[cols]
|
| 45 |
|
| 46 |
+
# Remove the 'Model Name' column
|
| 47 |
+
data = data.drop(columns=['Model Name'])
|
| 48 |
+
|
| 49 |
+
# Add average column
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
data['MMLU_average'] = data.filter(regex='MMLU').mean(axis=1)
|
| 51 |
|
| 52 |
+
# Reorder columns to move 'MMLU_average' to the third position
|
| 53 |
cols = data.columns.tolist()
|
| 54 |
cols = cols[:2] + cols[-1:] + cols[2:-1]
|
| 55 |
data = data[cols]
|
| 56 |
|
| 57 |
+
# Drop specific columns
|
| 58 |
+
return data.drop(columns=['all', 'truthfulqa:mc|0'])
|
| 59 |
+
|
| 60 |
def get_data(self, selected_models):
|
| 61 |
+
return self.data[self.data.index.isin(selected_models)]
|
|
|