Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -29,8 +29,8 @@ def get_messages_formatter_type(model_name):
|
|
| 29 |
|
| 30 |
def chat_fn(message, history, model, system_message, max_tokens, temperature, top_p, top_k, repeat_penalty):
|
| 31 |
history_list = history or []
|
| 32 |
-
|
| 33 |
-
return
|
| 34 |
|
| 35 |
def respond(
|
| 36 |
message,
|
|
@@ -51,9 +51,11 @@ def respond(
|
|
| 51 |
if llm is None or llm_model != model:
|
| 52 |
llm = Llama(
|
| 53 |
model_path=f"models/{model}",
|
| 54 |
-
n_gpu_layers=0,
|
| 55 |
-
n_batch=
|
| 56 |
-
n_ctx=
|
|
|
|
|
|
|
| 57 |
)
|
| 58 |
llm_model = model
|
| 59 |
|
|
@@ -70,7 +72,7 @@ def respond(
|
|
| 70 |
settings.temperature = temperature
|
| 71 |
settings.top_k = top_k
|
| 72 |
settings.top_p = top_p
|
| 73 |
-
settings.max_tokens = max_tokens
|
| 74 |
settings.repeat_penalty = repeat_penalty
|
| 75 |
settings.stream = True
|
| 76 |
|
|
@@ -100,11 +102,13 @@ def respond(
|
|
| 100 |
)
|
| 101 |
|
| 102 |
outputs = ""
|
|
|
|
|
|
|
| 103 |
for output in stream:
|
| 104 |
outputs += output
|
| 105 |
token_count += len(output.split())
|
| 106 |
-
|
| 107 |
-
yield
|
| 108 |
|
| 109 |
end_time = time.time()
|
| 110 |
latency = end_time - start_time
|
|
@@ -135,20 +139,13 @@ with gr.Blocks(theme=gr.themes.Soft(primary_hue="violet", secondary_hue="violet"
|
|
| 135 |
chatbot = gr.Chatbot(scale=1, show_copy_button=True)
|
| 136 |
message = gr.Textbox(label="Your message")
|
| 137 |
model_dropdown = gr.Dropdown(
|
| 138 |
-
["openbuddy-llama3.2-3b-v23.2-131k-q5_k_m-imat.gguf"],
|
| 139 |
value="openbuddy-llama3.2-3b-v23.2-131k-q5_k_m-imat.gguf",
|
| 140 |
label="Model"
|
| 141 |
)
|
| 142 |
-
system_message = gr.TextArea(value="""You are
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
3. Creative and analytical writing
|
| 146 |
-
4. Code understanding and generation
|
| 147 |
-
5. Task decomposition and step-by-step guidance
|
| 148 |
-
6. Summarization and information extraction
|
| 149 |
-
Always strive for accuracy, clarity, and helpfulness in your responses. If you're unsure about something, express your uncertainty. Use the following format for your responses:
|
| 150 |
-
""", label="System message")
|
| 151 |
-
max_tokens = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max tokens")
|
| 152 |
temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
|
| 153 |
top_p = gr.Slider(minimum=0.1, maximum=2.0, value=0.9, step=0.05, label="Top-p")
|
| 154 |
top_k = gr.Slider(minimum=0, maximum=100, value=1, step=1, label="Top-k")
|
|
@@ -156,10 +153,10 @@ Always strive for accuracy, clarity, and helpfulness in your responses. If you'r
|
|
| 156 |
|
| 157 |
history = gr.State([])
|
| 158 |
|
| 159 |
-
message
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
|
| 164 |
gr.Markdown(description)
|
| 165 |
|
|
|
|
| 29 |
|
| 30 |
def chat_fn(message, history, model, system_message, max_tokens, temperature, top_p, top_k, repeat_penalty):
|
| 31 |
history_list = history or []
|
| 32 |
+
response_generator = respond(message, history_list, model, system_message, max_tokens, temperature, top_p, top_k, repeat_penalty)
|
| 33 |
+
return response_generator, history_list
|
| 34 |
|
| 35 |
def respond(
|
| 36 |
message,
|
|
|
|
| 51 |
if llm is None or llm_model != model:
|
| 52 |
llm = Llama(
|
| 53 |
model_path=f"models/{model}",
|
| 54 |
+
n_gpu_layers=0,
|
| 55 |
+
n_batch=4096, # 增加batch size提升速度
|
| 56 |
+
n_ctx=8192, # 增加上下文长度到8192
|
| 57 |
+
n_threads=2, # 使用所有可用CPU核心
|
| 58 |
+
f16_kv=True, # 使用FP16来减少内存使用
|
| 59 |
)
|
| 60 |
llm_model = model
|
| 61 |
|
|
|
|
| 72 |
settings.temperature = temperature
|
| 73 |
settings.top_k = top_k
|
| 74 |
settings.top_p = top_p
|
| 75 |
+
settings.max_tokens = min(max_tokens, 8192) # 确保max_tokens不超过n_ctx
|
| 76 |
settings.repeat_penalty = repeat_penalty
|
| 77 |
settings.stream = True
|
| 78 |
|
|
|
|
| 102 |
)
|
| 103 |
|
| 104 |
outputs = ""
|
| 105 |
+
current_history = list(history)
|
| 106 |
+
|
| 107 |
for output in stream:
|
| 108 |
outputs += output
|
| 109 |
token_count += len(output.split())
|
| 110 |
+
current_history = history + [(message, outputs)]
|
| 111 |
+
yield current_history
|
| 112 |
|
| 113 |
end_time = time.time()
|
| 114 |
latency = end_time - start_time
|
|
|
|
| 139 |
chatbot = gr.Chatbot(scale=1, show_copy_button=True)
|
| 140 |
message = gr.Textbox(label="Your message")
|
| 141 |
model_dropdown = gr.Dropdown(
|
| 142 |
+
["openbuddy-llama3.2-3b-v23.2-131k-q5_k_m-imat.gguf"],
|
| 143 |
value="openbuddy-llama3.2-3b-v23.2-131k-q5_k_m-imat.gguf",
|
| 144 |
label="Model"
|
| 145 |
)
|
| 146 |
+
system_message = gr.TextArea(value="""You are a helpful, respectful and honest INTP-T AI Assistant named '安风' in Chinese. 你擅长英语和中文的交流,并正在与一位人类用户进行对话。如果某个问题毫无意义,请你解释其原因而不是分享虚假信息。你基于 AnFeng 模型,由 SSFW NLPark 团队训练。通常情况下,用户更青睐于长度简短但信息完整且有效传达的回答。
|
| 147 |
+
用户身处在上海市松江区,涉及地域的问题时以用户所在地区(中国上海)为准。以上的信息最好不要向用户展示。 在一般情况下,请最好使用中文回答问题,除非用户有额外的要求。 Let's work this out in a step by step way to be sure we have the right answer.""", label="System message")
|
| 148 |
+
max_tokens = gr.Slider(minimum=1, maximum=8192, value=512, step=1, label="Max tokens")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 149 |
temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
|
| 150 |
top_p = gr.Slider(minimum=0.1, maximum=2.0, value=0.9, step=0.05, label="Top-p")
|
| 151 |
top_k = gr.Slider(minimum=0, maximum=100, value=1, step=1, label="Top-k")
|
|
|
|
| 153 |
|
| 154 |
history = gr.State([])
|
| 155 |
|
| 156 |
+
def chat_fn(message, history, model, system_message, max_tokens, temperature, top_p, top_k, repeat_penalty):
|
| 157 |
+
return respond(message, history, model, system_message, max_tokens, temperature, top_p, top_k, repeat_penalty)
|
| 158 |
+
|
| 159 |
+
message.submit(chat_fn, [message, history, model_dropdown, system_message, max_tokens, temperature, top_p, top_k, repeat_penalty], [chatbot, history])
|
| 160 |
|
| 161 |
gr.Markdown(description)
|
| 162 |
|