Update app.py
Browse files
app.py
CHANGED
|
@@ -1,8 +1,10 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import os
|
| 3 |
import tempfile
|
|
|
|
| 4 |
from typing import Optional, Tuple, Union
|
| 5 |
from huggingface_hub import InferenceClient, whoami
|
|
|
|
| 6 |
|
| 7 |
# Initialize Hugging Face Inference Client with fal-ai provider
|
| 8 |
client = InferenceClient(
|
|
@@ -33,6 +35,21 @@ def verify_pro_status(token: Optional[Union[gr.OAuthToken, str]]) -> bool:
|
|
| 33 |
print(f"Could not verify user's PRO/Enterprise status: {e}")
|
| 34 |
return False
|
| 35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
def generate_video(
|
| 37 |
prompt: str,
|
| 38 |
duration: int = 8,
|
|
@@ -43,6 +60,9 @@ def generate_video(
|
|
| 43 |
Generate video using Sora-2 through Hugging Face Inference API with fal-ai provider.
|
| 44 |
Returns tuple of (video_path, status_message).
|
| 45 |
"""
|
|
|
|
|
|
|
|
|
|
| 46 |
try:
|
| 47 |
# Use provided API key or environment variable
|
| 48 |
if api_key:
|
|
@@ -62,10 +82,15 @@ def generate_video(
|
|
| 62 |
model="akhaliq/sora-2",
|
| 63 |
)
|
| 64 |
|
| 65 |
-
# Save to temporary file
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
|
| 70 |
status_message = f"✅ Video generated successfully!"
|
| 71 |
return video_path, status_message
|
|
@@ -285,6 +310,15 @@ def create_ui():
|
|
| 285 |
|
| 286 |
# Launch the application
|
| 287 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 288 |
app = create_ui()
|
| 289 |
# Launch without special auth parameters and no queue
|
| 290 |
# OAuth is enabled via Space metadata (hf_oauth: true in README.md)
|
|
@@ -292,4 +326,5 @@ if __name__ == "__main__":
|
|
| 292 |
show_api=False,
|
| 293 |
enable_monitoring=False,
|
| 294 |
quiet=True,
|
|
|
|
| 295 |
)
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import os
|
| 3 |
import tempfile
|
| 4 |
+
import shutil
|
| 5 |
from typing import Optional, Tuple, Union
|
| 6 |
from huggingface_hub import InferenceClient, whoami
|
| 7 |
+
from pathlib import Path
|
| 8 |
|
| 9 |
# Initialize Hugging Face Inference Client with fal-ai provider
|
| 10 |
client = InferenceClient(
|
|
|
|
| 35 |
print(f"Could not verify user's PRO/Enterprise status: {e}")
|
| 36 |
return False
|
| 37 |
|
| 38 |
+
def cleanup_temp_files():
|
| 39 |
+
"""Clean up old temporary video files to prevent storage overflow."""
|
| 40 |
+
try:
|
| 41 |
+
temp_dir = tempfile.gettempdir()
|
| 42 |
+
# Clean up old .mp4 files in temp directory
|
| 43 |
+
for file_path in Path(temp_dir).glob("*.mp4"):
|
| 44 |
+
try:
|
| 45 |
+
# Remove files older than 5 minutes
|
| 46 |
+
if file_path.stat().st_mtime < (os.time.time() - 300):
|
| 47 |
+
file_path.unlink(missing_ok=True)
|
| 48 |
+
except Exception:
|
| 49 |
+
pass # Ignore errors for individual files
|
| 50 |
+
except Exception as e:
|
| 51 |
+
print(f"Cleanup error: {e}")
|
| 52 |
+
|
| 53 |
def generate_video(
|
| 54 |
prompt: str,
|
| 55 |
duration: int = 8,
|
|
|
|
| 60 |
Generate video using Sora-2 through Hugging Face Inference API with fal-ai provider.
|
| 61 |
Returns tuple of (video_path, status_message).
|
| 62 |
"""
|
| 63 |
+
# Clean up old files before generating new ones
|
| 64 |
+
cleanup_temp_files()
|
| 65 |
+
|
| 66 |
try:
|
| 67 |
# Use provided API key or environment variable
|
| 68 |
if api_key:
|
|
|
|
| 82 |
model="akhaliq/sora-2",
|
| 83 |
)
|
| 84 |
|
| 85 |
+
# Save to temporary file with proper cleanup
|
| 86 |
+
# Use NamedTemporaryFile with delete=True but keep reference
|
| 87 |
+
temp_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False)
|
| 88 |
+
try:
|
| 89 |
+
temp_file.write(video_bytes)
|
| 90 |
+
temp_file.flush()
|
| 91 |
+
video_path = temp_file.name
|
| 92 |
+
finally:
|
| 93 |
+
temp_file.close()
|
| 94 |
|
| 95 |
status_message = f"✅ Video generated successfully!"
|
| 96 |
return video_path, status_message
|
|
|
|
| 310 |
|
| 311 |
# Launch the application
|
| 312 |
if __name__ == "__main__":
|
| 313 |
+
# Clean up any leftover files on startup
|
| 314 |
+
try:
|
| 315 |
+
cleanup_temp_files()
|
| 316 |
+
# Also try to clear Gradio's cache
|
| 317 |
+
if os.path.exists("gradio_cached_examples"):
|
| 318 |
+
shutil.rmtree("gradio_cached_examples", ignore_errors=True)
|
| 319 |
+
except Exception as e:
|
| 320 |
+
print(f"Initial cleanup error: {e}")
|
| 321 |
+
|
| 322 |
app = create_ui()
|
| 323 |
# Launch without special auth parameters and no queue
|
| 324 |
# OAuth is enabled via Space metadata (hf_oauth: true in README.md)
|
|
|
|
| 326 |
show_api=False,
|
| 327 |
enable_monitoring=False,
|
| 328 |
quiet=True,
|
| 329 |
+
max_threads=10, # Limit threads to prevent resource exhaustion
|
| 330 |
)
|