Spaces:
Running
Running
| from dataclasses import dataclass, make_dataclass | |
| from enum import Enum | |
| import pandas as pd | |
| from src.about import Tasks | |
| def fields(raw_class): | |
| return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"] | |
| # These classes are for user facing column names, | |
| # to avoid having to change them all around the code | |
| # when a modif is needed | |
| class ColumnContent: | |
| name: str | |
| type: str | |
| displayed_by_default: bool | |
| hidden: bool = False | |
| never_hidden: bool = False | |
| # Leaderboard columns | |
| auto_eval_column_dict = [] | |
| # Init | |
| auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent( | |
| "T", "str", False, never_hidden=True)]) | |
| auto_eval_column_dict.append(["model", ColumnContent, ColumnContent( | |
| "Model", "markdown", False, never_hidden=True)]) | |
| auto_eval_column_dict.append( | |
| ["params", ColumnContent, ColumnContent("Model Size", "str", False, False)]) | |
| # Scores | |
| # auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)]) | |
| for task in Tasks: | |
| auto_eval_column_dict.append( | |
| [task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)]) | |
| # Model information | |
| auto_eval_column_dict.append( | |
| ["model_type", ColumnContent, ColumnContent("Type", "str", False, True)]) | |
| auto_eval_column_dict.append( | |
| ["architecture", ColumnContent, ColumnContent("Architecture", "str", False, True)]) | |
| auto_eval_column_dict.append( | |
| ["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)]) | |
| auto_eval_column_dict.append( | |
| ["precision", ColumnContent, ColumnContent("Precision", "str", False, True)]) | |
| auto_eval_column_dict.append( | |
| ["license", ColumnContent, ColumnContent("Hub License", "str", False, True)]) | |
| auto_eval_column_dict.append( | |
| ["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False, True)]) | |
| auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent( | |
| "Available on the hub", "bool", False, True)]) | |
| auto_eval_column_dict.append( | |
| ["revision", ColumnContent, ColumnContent("Eval Date", "str", False, False)]) | |
| # We use make dataclass to dynamically fill the scores from Tasks | |
| AutoEvalColumn = make_dataclass( | |
| "AutoEvalColumn", auto_eval_column_dict, frozen=True) | |
| # For the queue columns in the submission tab | |
| class EvalQueueColumn: # Queue column | |
| model = ColumnContent("model", "markdown", True) | |
| revision = ColumnContent("revision", "str", True) | |
| private = ColumnContent("private", "bool", True) | |
| precision = ColumnContent("precision", "str", True) | |
| weight_type = ColumnContent("weight_type", "str", "Original") | |
| status = ColumnContent("status", "str", True) | |
| # All the model information that we might need | |
| class ModelDetails: | |
| name: str | |
| display_name: str = "" | |
| symbol: str = "" # emoji | |
| class ModelType(Enum): | |
| open = ModelDetails(name="Open", symbol="🟢") | |
| # FT = ModelDetails(name="fine-tuned", symbol="🔶") | |
| close = ModelDetails(name="Closed", symbol="⭕") | |
| # RL = ModelDetails(name="RL-tuned", symbol="🟦") | |
| Unknown = ModelDetails(name="", symbol="?") | |
| def to_str(self, separator=" "): | |
| return f"{self.value.symbol}{separator}{self.value.name}" | |
| def from_str(type): | |
| # if "fine-tuned" in type or "🔶" in type: | |
| # return ModelType.FT | |
| if "Open" in type or "🟢" in type: | |
| return ModelType.open | |
| # if "RL-tuned" in type or "🟦" in type: | |
| # return ModelType.RL | |
| if "Closed" in type or "⭕" in type: | |
| return ModelType.close | |
| return ModelType.Unknown | |
| class WeightType(Enum): | |
| Adapter = ModelDetails("Adapter") | |
| Original = ModelDetails("Original") | |
| Delta = ModelDetails("Delta") | |
| class Precision(Enum): | |
| float16 = ModelDetails("float16") | |
| bfloat16 = ModelDetails("bfloat16") | |
| float32 = ModelDetails("float32") | |
| # qt_8bit = ModelDetails("8bit") | |
| # qt_4bit = ModelDetails("4bit") | |
| # qt_GPTQ = ModelDetails("GPTQ") | |
| Unknown = ModelDetails("?") | |
| def from_str(precision): | |
| if precision in ["torch.float16", "float16"]: | |
| return Precision.float16 | |
| if precision in ["torch.bfloat16", "bfloat16"]: | |
| return Precision.bfloat16 | |
| if precision in ["float32"]: | |
| return Precision.float32 | |
| # if precision in ["8bit"]: | |
| # return Precision.qt_8bit | |
| # if precision in ["4bit"]: | |
| # return Precision.qt_4bit | |
| # if precision in ["GPTQ", "None"]: | |
| # return Precision.qt_GPTQ | |
| return Precision.Unknown | |
| # Column selection | |
| COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden] | |
| TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden] | |
| COLS_LITE = [c.name for c in fields( | |
| AutoEvalColumn) if c.displayed_by_default and not c.hidden] | |
| TYPES_LITE = [c.type for c in fields( | |
| AutoEvalColumn) if c.displayed_by_default and not c.hidden] | |
| EVAL_COLS = [c.name for c in fields(EvalQueueColumn)] | |
| EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)] | |
| BENCHMARK_COLS = [t.value.col_name for t in Tasks] | |
| NUMERIC_INTERVALS = { | |
| "?": pd.Interval(-1, 0, closed="right"), | |
| "~1.5": pd.Interval(0, 2, closed="right"), | |
| "~3": pd.Interval(2, 4, closed="right"), | |
| "~7": pd.Interval(4, 9, closed="right"), | |
| "~13": pd.Interval(9, 20, closed="right"), | |
| "~35": pd.Interval(20, 45, closed="right"), | |
| "~60": pd.Interval(45, 70, closed="right"), | |
| "70+": pd.Interval(70, 10000, closed="right"), | |
| } | |
| SIZE_INTERVALS = [ | |
| 'Small', | |
| 'Medium', | |
| 'Large', | |
| ] | |