Spaces:
Running
Running
Andrea Seveso
commited on
Commit
·
4f4b508
1
Parent(s):
53bb222
New text for tables
Browse files- app.py +3 -1
- src/about.py +20 -2
app.py
CHANGED
|
@@ -132,7 +132,9 @@ def filter_models(
|
|
| 132 |
def get_macro_area_data():
|
| 133 |
dataset = pd.read_csv("src/macro_area.csv", sep=',', skiprows=1)
|
| 134 |
dataset = dataset.iloc[1:]
|
| 135 |
-
|
|
|
|
|
|
|
| 136 |
# dataset = dataset.style.highlight_max(color='lightgreen', axis=0)
|
| 137 |
return dataset
|
| 138 |
|
|
|
|
| 132 |
def get_macro_area_data():
|
| 133 |
dataset = pd.read_csv("src/macro_area.csv", sep=',', skiprows=1)
|
| 134 |
dataset = dataset.iloc[1:]
|
| 135 |
+
columns = ['Model', 'LI (108)', 'RM (179)', 'RC (33)', 'WF (7)',
|
| 136 |
+
'LS (29)', ' MO (24)', 'SP (4)', 'SY (19)', 'TP (6)']
|
| 137 |
+
dataset.columns = columns
|
| 138 |
# dataset = dataset.style.highlight_max(color='lightgreen', axis=0)
|
| 139 |
return dataset
|
| 140 |
|
src/about.py
CHANGED
|
@@ -249,9 +249,27 @@ CITATION_BUTTON_TEXT = r"""
|
|
| 249 |
"""
|
| 250 |
|
| 251 |
QUESTION_FORMAT_TEXT = """
|
| 252 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 253 |
"""
|
| 254 |
|
| 255 |
MACRO_AREA_TEXT = """"
|
| 256 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 257 |
"""
|
|
|
|
| 249 |
"""
|
| 250 |
|
| 251 |
QUESTION_FORMAT_TEXT = """
|
| 252 |
+
Performance (accuracy %) comparison of AI models across school grades and question formats for grades 2 to 13.
|
| 253 |
+
|
| 254 |
+
|
| 255 |
+
Due to the stratification and the limited number of questions in some categories, extreme values such as 100 or 0 are more attainable in the sections with few items.
|
| 256 |
+
|
| 257 |
+
|
| 258 |
"""
|
| 259 |
|
| 260 |
MACRO_AREA_TEXT = """"
|
| 261 |
+
Performance (accuracy %) comparison of AI models across macro areas.
|
| 262 |
+
The number of questions for each category is indicated in the table headers.
|
| 263 |
+
|
| 264 |
+
Categories are abbreviated as:
|
| 265 |
+
|
| 266 |
+
* _LI_: Locate and identify information within the text.
|
| 267 |
+
* _RM_: Reconstruct the meaning of the text, locally or globally.
|
| 268 |
+
* _RC_: Reflect on the content or form of the text, locally or globally, and evaluate them.
|
| 269 |
+
* _WF_: Word formation.
|
| 270 |
+
* _LS_: Lexicon and semantics.
|
| 271 |
+
* _MO_: Morphology.
|
| 272 |
+
* _SP_: Spelling.
|
| 273 |
+
* _SY_: Syntax.
|
| 274 |
+
* _TP_: Textuality and pragmatics.
|
| 275 |
"""
|