Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,150 +1,1574 @@
|
|
| 1 |
-
import
|
| 2 |
-
import
|
| 3 |
-
import seaborn as sns
|
| 4 |
-
import gradio as gr
|
| 5 |
import requests
|
| 6 |
from bs4 import BeautifulSoup
|
| 7 |
-
import
|
| 8 |
-
import os
|
| 9 |
-
import base64
|
| 10 |
-
import zipfile
|
| 11 |
-
from PIL import Image
|
| 12 |
-
from io import BytesIO
|
| 13 |
-
import tempfile
|
| 14 |
-
|
| 15 |
-
### ----------------------------------------------------------------
|
| 16 |
-
### PART 1: "PARSED BENCHMARK RESULTS" SECTION
|
| 17 |
-
### ----------------------------------------------------------------
|
| 18 |
|
| 19 |
-
#
|
| 20 |
-
#
|
| 21 |
-
#
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
Model average score across benchmarks in %: 40.1
|
| 28 |
-
Models average score on IFEval benchmarks in %: 72.57
|
| 29 |
-
Models average score on BBH benchmarks in %: 48.58
|
| 30 |
-
Models average score on MATH benchmarks in %: 34.44
|
| 31 |
-
Models average score in GPQA benchmarks in %: 17.34
|
| 32 |
-
Models average score in MUSR benchmarks in %: 19.39
|
| 33 |
-
Models average score in MMLU-PRO benchmarks in %: 48.26
|
| 34 |
-
###
|
| 35 |
-
models:
|
| 36 |
-
- model: CultriX/SeQwence-14Bv1
|
| 37 |
-
- model: allknowingroger/Qwenslerp5-14B
|
| 38 |
-
merge_method: slerp
|
| 39 |
-
base_model: CultriX/SeQwence-14Bv1
|
| 40 |
-
dtype: bfloat16
|
| 41 |
-
parameters:
|
| 42 |
-
t: [0, 0.5, 1, 0.5, 0] # V shaped curve: Hermes for input & output, WizardMath in the middle layers
|
| 43 |
-
###
|
| 44 |
-
---
|
| 45 |
-
Model Rank: 45
|
| 46 |
-
Model Name: sthenno-com/miscii-14b-1225
|
| 47 |
-
Model average score across benchmarks in %: 40.08
|
| 48 |
-
Models average score on IFEval benchmarks in %: 78.78
|
| 49 |
-
Models average score on BBH benchmarks in %: 50.91
|
| 50 |
-
Models average score on MATH benchmarks in %: 31.57
|
| 51 |
-
Models average score in GPQA benchmarks in %: 17.0
|
| 52 |
-
Models average score in MUSR benchmarks in %: 14.77
|
| 53 |
-
Models average score in MMLU-PRO benchmarks in %: 47.46
|
| 54 |
-
###
|
| 55 |
-
tokenizer_source: "base"
|
| 56 |
-
chat_template: "chatml"
|
| 57 |
|
| 58 |
-
|
| 59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
-
parameters:
|
| 62 |
-
normalize: true
|
| 63 |
|
| 64 |
-
|
|
|
|
|
|
|
| 65 |
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
weight: 0.6
|
| 82 |
-
density: 0.5
|
| 83 |
-
###
|
| 84 |
-
---
|
| 85 |
-
Model Rank: 46
|
| 86 |
-
Model Name: djuna/Q2.5-Veltha-14B-0.5
|
| 87 |
-
Model average score across benchmarks in %: 39.96
|
| 88 |
-
Models average score on IFEval benchmarks in %: 77.96
|
| 89 |
-
Models average score on BBH benchmarks in %: 50.32
|
| 90 |
-
Models average score on MATH benchmarks in %: 33.84
|
| 91 |
-
Models average score in GPQA benchmarks in %: 15.77
|
| 92 |
-
Models average score in MUSR benchmarks in %: 14.17
|
| 93 |
-
Models average score in MMLU-PRO benchmarks in %: 47.72
|
| 94 |
-
###
|
| 95 |
-
merge_method: della_linear
|
| 96 |
-
dtype: float32
|
| 97 |
-
out_dtype: bfloat16
|
| 98 |
-
parameters:
|
| 99 |
-
epsilon: 0.04
|
| 100 |
-
lambda: 1.05
|
| 101 |
-
normalize: true
|
| 102 |
-
base_model: arcee-ai/SuperNova-Medius
|
| 103 |
-
tokenizer_source: arcee-ai/SuperNova-Medius
|
| 104 |
-
models:
|
| 105 |
-
- model: arcee-ai/SuperNova-Medius
|
| 106 |
-
parameters:
|
| 107 |
-
weight: 10
|
| 108 |
-
density: 1
|
| 109 |
-
- model: EVA-UNIT-01/EVA-Qwen2.5-14B-v0.2
|
| 110 |
-
parameters:
|
| 111 |
-
weight: 7
|
| 112 |
-
density: 0.5
|
| 113 |
-
- model: v000000/Qwen2.5-Lumen-14B
|
| 114 |
-
parameters:
|
| 115 |
-
weight: 7
|
| 116 |
-
density: 0.4
|
| 117 |
-
- model: allura-org/TQ2.5-14B-Aletheia-v1
|
| 118 |
-
parameters:
|
| 119 |
-
weight: 8
|
| 120 |
-
density: 0.4
|
| 121 |
-
- model: huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2
|
| 122 |
-
parameters:
|
| 123 |
-
weight: 8
|
| 124 |
-
density: 0.45
|
| 125 |
-
###
|
| 126 |
-
---
|
| 127 |
-
Model Rank: 48
|
| 128 |
-
Model Name: sometimesanotion/Qwen2.5-14B-Vimarckoso-v3-model_stock
|
| 129 |
-
Model average score across benchmarks in %: 39.81
|
| 130 |
-
Models average score on IFEval benchmarks in %: 71.62
|
| 131 |
-
Models average score on BBH benchmarks in %: 48.76
|
| 132 |
-
Models average score on MATH benchmarks in %: 33.99
|
| 133 |
-
Models average score in GPQA benchmarks in %: 17.34
|
| 134 |
-
Models average score in MUSR benchmarks in %: 19.23
|
| 135 |
-
Models average score in MMLU-PRO benchmarks in %: 47.95
|
| 136 |
-
(No MergeKit configuration found.)
|
| 137 |
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
from bs4 import BeautifulSoup
|
| 142 |
|
| 143 |
def scrape_model_page(model_url):
|
| 144 |
try:
|
| 145 |
response = requests.get(model_url)
|
| 146 |
if response.status_code != 200:
|
| 147 |
-
return f"Error: Unable to fetch the page (Status Code: {response.status_code})"
|
| 148 |
|
| 149 |
soup = BeautifulSoup(response.text, "html.parser")
|
| 150 |
|
|
@@ -154,307 +1578,80 @@ def scrape_model_page(model_url):
|
|
| 154 |
metadata_section = soup.find("div", class_="metadata")
|
| 155 |
metadata_text = metadata_section.text.strip() if metadata_section else "No metadata found."
|
| 156 |
|
| 157 |
-
return {
|
| 158 |
"yaml_configuration": yaml_text,
|
| 159 |
"metadata": metadata_text
|
| 160 |
-
}
|
| 161 |
|
| 162 |
except Exception as e:
|
| 163 |
-
return f"Error: {str(e)}"
|
| 164 |
|
| 165 |
if __name__ == "__main__":
|
| 166 |
-
model_url = "https://huggingface.co/
|
| 167 |
result = scrape_model_page(model_url)
|
| 168 |
-
print(result)
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
Model Rank: 50
|
| 172 |
-
Model Name: sometimesanotion/Qwen2.5-14B-Vimarckoso-v3-Prose01
|
| 173 |
-
Model average score across benchmarks in %: 39.46
|
| 174 |
-
Models average score on IFEval benchmarks in %: 68.72
|
| 175 |
-
Models average score on BBH benchmarks in %: 47.71
|
| 176 |
-
Models average score on MATH benchmarks in %: 35.05
|
| 177 |
-
Models average score in GPQA benchmarks in %: 18.23
|
| 178 |
-
Models average score in MUSR benchmarks in %: 19.56
|
| 179 |
-
Models average score in MMLU-PRO benchmarks in %: 47.5
|
| 180 |
-
(No MergeKit configuration found.)
|
| 181 |
-
|
| 182 |
-
# ... [SNIP: The rest of your “great results” content was included in full] ...
|
| 183 |
-
# (Due to character length constraints in an answer, you’d typically keep it all in one large string.)
|
| 184 |
-
"""
|
| 185 |
|
| 186 |
|
| 187 |
-
def
|
| 188 |
"""
|
| 189 |
-
|
| 190 |
-
|
| 191 |
"""
|
| 192 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 193 |
|
| 194 |
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
['CultriX/Qwen2.5-14B-FinalMerge', 'https://huggingface.co/CultriX/Qwen2.5-14B-FinalMerge', 0.7248, 0.8277, 0.7113, 0.7052, 0.57, 0.7001],
|
| 205 |
-
['CultriX/Qwen2.5-14B-MultiCultyv2', 'https://huggingface.co/CultriX/Qwen2.5-14B-MultiCultyv2', 0.7295, 0.8359, 0.7363, 0.5767, 0.44, 0.7316],
|
| 206 |
-
['CultriX/Qwen2.5-14B-Brocav7', 'https://huggingface.co/CultriX/Qwen2.5-14B-Brocav7', 0.7445, 0.8353, 0.7508, 0.6292, 0.46, 0.7629],
|
| 207 |
-
['CultriX/Qwen2.5-14B-Broca', 'https://huggingface.co/CultriX/Qwen2.5-14B-Broca', 0.7456, 0.8352, 0.748, 0.6034, 0.44, 0.7716],
|
| 208 |
-
['CultriX/Qwen2.5-14B-Brocav3', 'https://huggingface.co/CultriX/Qwen2.5-14B-Brocav3', 0.7395, 0.8388, 0.7393, 0.6405, 0.47, 0.7659],
|
| 209 |
-
['CultriX/Qwen2.5-14B-Brocav4', 'https://huggingface.co/CultriX/Qwen2.5-14B-Brocav4', 0.7432, 0.8377, 0.7444, 0.6277, 0.48, 0.758],
|
| 210 |
-
['CultriX/Qwen2.5-14B-Brocav2', 'https://huggingface.co/CultriX/Qwen2.5-14B-Brocav2', 0.7492, 0.8302, 0.7508, 0.6377, 0.51, 0.7478],
|
| 211 |
-
['CultriX/Qwen2.5-14B-Brocav5', 'https://huggingface.co/CultriX/Qwen2.5-14B-Brocav5', 0.7445, 0.8313, 0.7547, 0.6376, 0.5, 0.7304],
|
| 212 |
-
['CultriX/Qwen2.5-14B-Brocav6', 'https://huggingface.co/CultriX/Qwen2.5-14B-Brocav6', 0.7179, 0.8354, 0.7531, 0.6378, 0.49, 0.7524],
|
| 213 |
-
['CultriX/Qwenfinity-2.5-14B', 'https://huggingface.co/CultriX/Qwenfinity-2.5-14B', 0.7347, 0.8254, 0.7279, 0.7267, 0.56, 0.697],
|
| 214 |
-
['CultriX/Qwen2.5-14B-Emergedv2', 'https://huggingface.co/CultriX/Qwen2.5-14B-Emergedv2', 0.7137, 0.8335, 0.7363, 0.5836, 0.44, 0.7344],
|
| 215 |
-
['CultriX/Qwen2.5-14B-Unity', 'https://huggingface.co/CultriX/Qwen2.5-14B-Unity', 0.7063, 0.8343, 0.7423, 0.682, 0.57, 0.7498],
|
| 216 |
-
['CultriX/Qwen2.5-14B-MultiCultyv3', 'https://huggingface.co/CultriX/Qwen2.5-14B-MultiCultyv3', 0.7132, 0.8216, 0.7395, 0.6792, 0.55, 0.712],
|
| 217 |
-
['CultriX/Qwen2.5-14B-Emergedv3', 'https://huggingface.co/CultriX/Qwen2.5-14B-Emergedv3', 0.7436, 0.8312, 0.7519, 0.6585, 0.55, 0.7068],
|
| 218 |
-
['CultriX/SeQwence-14Bv1', 'https://huggingface.co/CultriX/SeQwence-14Bv1', 0.7278, 0.841, 0.7541, 0.6816, 0.52, 0.7539],
|
| 219 |
-
['CultriX/Qwen2.5-14B-Wernickev2', 'https://huggingface.co/CultriX/Qwen2.5-14B-Wernickev2', 0.7391, 0.8168, 0.7273, 0.622, 0.45, 0.7572],
|
| 220 |
-
['CultriX/Qwen2.5-14B-Wernickev3', 'https://huggingface.co/CultriX/Qwen2.5-14B-Wernickev3', 0.7357, 0.8148, 0.7245, 0.7023, 0.55, 0.7869],
|
| 221 |
-
['CultriX/Qwen2.5-14B-Wernickev4', 'https://huggingface.co/CultriX/Qwen2.5-14B-Wernickev4', 0.7355, 0.829, 0.7497, 0.6306, 0.48, 0.7635],
|
| 222 |
-
['CultriX/SeQwential-14B-v1', 'https://huggingface.co/CultriX/SeQwential-14B-v1', 0.7355, 0.8205, 0.7549, 0.6367, 0.48, 0.7626],
|
| 223 |
-
['CultriX/Qwen2.5-14B-Wernickev5', 'https://huggingface.co/CultriX/Qwen2.5-14B-Wernickev5', 0.7224, 0.8272, 0.7541, 0.679, 0.51, 0.7578],
|
| 224 |
-
['CultriX/Qwen2.5-14B-Wernickev6', 'https://huggingface.co/CultriX/Qwen2.5-14B-Wernickev6', 0.6994, 0.7549, 0.5816, 0.6991, 0.58, 0.7267],
|
| 225 |
-
['CultriX/Qwen2.5-14B-Wernickev7', 'https://huggingface.co/CultriX/Qwen2.5-14B-Wernickev7', 0.7147, 0.7599, 0.6097, 0.7056, 0.57, 0.7164],
|
| 226 |
-
['CultriX/Qwen2.5-14B-FinalMerge-tmp2', 'https://huggingface.co/CultriX/Qwen2.5-14B-FinalMerge-tmp2', 0.7255, 0.8192, 0.7535, 0.6671, 0.5, 0.7612],
|
| 227 |
-
['CultriX/Qwen2.5-14B-BrocaV8', 'https://huggingface.co/CultriX/Qwen2.5-14B-BrocaV8', 0.7415, 0.8396, 0.7334, 0.5785, 0.4300, 0.7646],
|
| 228 |
-
]
|
| 229 |
-
df_full = pd.DataFrame(data_full, columns=columns)
|
| 230 |
-
|
| 231 |
-
def plot_average_scores():
|
| 232 |
-
df_full["Average Score"] = df_full.iloc[:, 2:].mean(axis=1)
|
| 233 |
-
df_avg_sorted = df_full.sort_values(by="Average Score", ascending=False)
|
| 234 |
-
|
| 235 |
-
plt.figure(figsize=(14, 10))
|
| 236 |
-
plt.barh(df_avg_sorted["Model Configuration"], df_avg_sorted["Average Score"])
|
| 237 |
-
plt.title("Average Performance of Models Across Tasks", fontsize=16)
|
| 238 |
-
plt.xlabel("Average Score", fontsize=14)
|
| 239 |
-
plt.ylabel("Model Configuration", fontsize=14)
|
| 240 |
-
plt.gca().invert_yaxis()
|
| 241 |
-
plt.grid(axis='x', linestyle='--', alpha=0.7)
|
| 242 |
-
plt.tight_layout()
|
| 243 |
-
|
| 244 |
-
img_buffer = io.BytesIO()
|
| 245 |
-
plt.savefig(img_buffer, format='png')
|
| 246 |
-
img_buffer.seek(0)
|
| 247 |
-
img_base64 = base64.b64encode(img_buffer.read()).decode('utf-8')
|
| 248 |
-
plt.close()
|
| 249 |
-
|
| 250 |
-
pil_image = Image.open(BytesIO(base64.b64decode(img_base64)))
|
| 251 |
-
temp_image_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
|
| 252 |
-
pil_image.save(temp_image_file.name)
|
| 253 |
-
return pil_image, temp_image_file.name
|
| 254 |
-
|
| 255 |
-
def plot_task_performance():
|
| 256 |
-
df_full_melted = df_full.melt(id_vars=["Model Configuration", "Model Link"], var_name="Task", value_name="Score")
|
| 257 |
-
|
| 258 |
-
plt.figure(figsize=(16, 12))
|
| 259 |
-
for model in df_full["Model Configuration"]:
|
| 260 |
-
model_data = df_full_melted[df_full_melted["Model Configuration"] == model]
|
| 261 |
-
plt.plot(model_data["Task"], model_data["Score"], marker="o", label=model)
|
| 262 |
-
|
| 263 |
-
plt.title("Performance of All Models Across Tasks", fontsize=16)
|
| 264 |
-
plt.xlabel("Task", fontsize=14)
|
| 265 |
-
plt.ylabel("Score", fontsize=14)
|
| 266 |
-
plt.xticks(rotation=45)
|
| 267 |
-
plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left', fontsize=9)
|
| 268 |
-
plt.grid(axis='y', linestyle='--', alpha=0.7)
|
| 269 |
-
plt.tight_layout()
|
| 270 |
-
|
| 271 |
-
img_buffer = io.BytesIO()
|
| 272 |
-
plt.savefig(img_buffer, format='png')
|
| 273 |
-
img_buffer.seek(0)
|
| 274 |
-
img_base64 = base64.b64encode(img_buffer.read()).decode('utf-8')
|
| 275 |
-
plt.close()
|
| 276 |
-
|
| 277 |
-
pil_image = Image.open(BytesIO(base64.b64decode(img_base64)))
|
| 278 |
-
temp_image_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
|
| 279 |
-
pil_image.save(temp_image_file.name)
|
| 280 |
-
return pil_image, temp_image_file.name
|
| 281 |
-
|
| 282 |
-
def plot_task_specific_top_models():
|
| 283 |
-
top_models = df_full.iloc[:, 2:].idxmax()
|
| 284 |
-
top_scores = df_full.iloc[:, 2:].max()
|
| 285 |
-
|
| 286 |
-
results = pd.DataFrame({"Top Model": top_models, "Score": top_scores}).reset_index().rename(columns={"index": "Task"})
|
| 287 |
-
|
| 288 |
-
plt.figure(figsize=(14, 8))
|
| 289 |
-
plt.bar(results["Task"], results["Score"])
|
| 290 |
-
plt.title("Task-Specific Top Models", fontsize=16)
|
| 291 |
-
plt.xlabel("Task", fontsize=14)
|
| 292 |
-
plt.ylabel("Score", fontsize=14)
|
| 293 |
-
plt.grid(axis="y", linestyle="--", alpha=0.7)
|
| 294 |
-
plt.tight_layout()
|
| 295 |
-
|
| 296 |
-
img_buffer = io.BytesIO()
|
| 297 |
-
plt.savefig(img_buffer, format='png')
|
| 298 |
-
img_buffer.seek(0)
|
| 299 |
-
img_base64 = base64.b64encode(img_buffer.read()).decode('utf-8')
|
| 300 |
-
plt.close()
|
| 301 |
-
pil_image = Image.open(BytesIO(base64.b64decode(img_base64)))
|
| 302 |
-
temp_image_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
|
| 303 |
-
pil_image.save(temp_image_file.name)
|
| 304 |
-
return pil_image, temp_image_file.name
|
| 305 |
-
|
| 306 |
-
def plot_heatmap():
|
| 307 |
-
plt.figure(figsize=(14, 10))
|
| 308 |
-
sns.heatmap(df_full.iloc[:, 2:], annot=True, cmap="YlGnBu",
|
| 309 |
-
xticklabels=columns[2:], yticklabels=df_full["Model Configuration"])
|
| 310 |
-
plt.title("Performance Heatmap", fontsize=16)
|
| 311 |
-
plt.tight_layout()
|
| 312 |
-
|
| 313 |
-
img_buffer = io.BytesIO()
|
| 314 |
-
plt.savefig(img_buffer, format='png')
|
| 315 |
-
img_buffer.seek(0)
|
| 316 |
-
img_base64 = base64.b64encode(img_buffer.read()).decode('utf-8')
|
| 317 |
-
plt.close()
|
| 318 |
-
pil_image = Image.open(BytesIO(base64.b64decode(img_base64)))
|
| 319 |
-
temp_image_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
|
| 320 |
-
pil_image.save(temp_image_file.name)
|
| 321 |
-
return pil_image, temp_image_file.name
|
| 322 |
-
|
| 323 |
-
def scrape_mergekit_config(model_name):
|
| 324 |
-
model_link = df_full.loc[df_full["Model Configuration"] == model_name, "Model Link"].values[0]
|
| 325 |
-
response = requests.get(model_link)
|
| 326 |
-
if response.status_code != 200:
|
| 327 |
-
return f"Failed to fetch model page for {model_name}. Please check the link."
|
| 328 |
-
|
| 329 |
-
soup = BeautifulSoup(response.text, "html.parser")
|
| 330 |
-
yaml_config = soup.find("pre") # Assume YAML is in <pre> tags
|
| 331 |
-
if yaml_config:
|
| 332 |
-
return yaml_config.text.strip()
|
| 333 |
-
return f"No YAML configuration found for {model_name}."
|
| 334 |
-
|
| 335 |
-
def download_yaml(yaml_content, model_name):
|
| 336 |
-
if "No YAML configuration found" in yaml_content or "Failed to fetch model page" in yaml_content:
|
| 337 |
-
return None
|
| 338 |
-
|
| 339 |
-
filename = f"{model_name.replace('/', '_')}_config.yaml"
|
| 340 |
-
return gr.File(value=yaml_content.encode(), filename=filename)
|
| 341 |
-
|
| 342 |
-
def scrape_model_page(model_url):
|
| 343 |
-
try:
|
| 344 |
-
response = requests.get(model_url)
|
| 345 |
-
if response.status_code != 200:
|
| 346 |
-
return f"Error: Unable to fetch the page (Status Code: {response.status_code})"
|
| 347 |
-
|
| 348 |
-
soup = BeautifulSoup(response.text, "html.parser")
|
| 349 |
-
yaml_config = soup.find("pre")
|
| 350 |
-
yaml_text = yaml_config.text.strip() if yaml_config else "No YAML configuration found."
|
| 351 |
-
metadata_section = soup.find("div", class_="metadata")
|
| 352 |
-
metadata_text = metadata_section.text.strip() if metadata_section else "No metadata found."
|
| 353 |
-
return f"**YAML Configuration:**\n{yaml_text}\n\n**Metadata:**\n{metadata_text}"
|
| 354 |
-
except Exception as e:
|
| 355 |
-
return f"Error: {str(e)}"
|
| 356 |
-
|
| 357 |
-
def display_scraped_model_data(model_url):
|
| 358 |
-
return scrape_model_page(model_url)
|
| 359 |
-
|
| 360 |
-
def download_all_data():
|
| 361 |
-
csv_buffer = io.StringIO()
|
| 362 |
-
df_full.to_csv(csv_buffer, index=False)
|
| 363 |
-
csv_data = csv_buffer.getvalue().encode('utf-8')
|
| 364 |
-
|
| 365 |
-
average_plot_pil, average_plot_name = plot_average_scores()
|
| 366 |
-
task_plot_pil, task_plot_name = plot_task_performance()
|
| 367 |
-
top_models_plot_pil, top_models_plot_name = plot_task_specific_top_models()
|
| 368 |
-
heatmap_plot_pil, heatmap_plot_name = plot_heatmap()
|
| 369 |
-
|
| 370 |
-
plot_dict = {
|
| 371 |
-
"average_performance": (average_plot_pil, average_plot_name),
|
| 372 |
-
"task_performance": (task_plot_pil, task_plot_name),
|
| 373 |
-
"top_models": (top_models_plot_pil, top_models_plot_name),
|
| 374 |
-
"heatmap": (heatmap_plot_pil, heatmap_plot_name)
|
| 375 |
-
}
|
| 376 |
-
|
| 377 |
-
zip_buffer = io.BytesIO()
|
| 378 |
-
with zipfile.ZipFile(zip_buffer, 'w') as zf:
|
| 379 |
-
zf.writestr("model_scores.csv", csv_data)
|
| 380 |
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
pil_image.save(image_bytes, format='PNG')
|
| 384 |
-
image_bytes.seek(0)
|
| 385 |
-
zf.writestr(filename, image_bytes.read())
|
| 386 |
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
if ("No YAML configuration found" not in yaml_content) and ("Failed to fetch model page" not in yaml_content):
|
| 390 |
-
zf.writestr(f"{model_name.replace('/', '_')}_config.yaml", yaml_content.encode())
|
| 391 |
|
| 392 |
-
zip_buffer.seek(0)
|
| 393 |
-
return zip_buffer, "analysis_data.zip"
|
| 394 |
|
|
|
|
|
|
|
|
|
|
| 395 |
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
|
|
|
|
|
|
|
|
|
|
| 399 |
|
| 400 |
with gr.Blocks() as demo:
|
| 401 |
-
gr.Markdown("#
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
img1 = gr.Image(type="pil", label="Average Performance Plot")
|
| 407 |
-
img1_download = gr.File(label="Download Average Performance")
|
| 408 |
-
btn1.click(plot_average_scores, outputs=[img1,img1_download])
|
| 409 |
-
|
| 410 |
-
with gr.Row():
|
| 411 |
-
btn2 = gr.Button("Show Task Performance")
|
| 412 |
-
img2 = gr.Image(type="pil", label="Task Performance Plot")
|
| 413 |
-
img2_download = gr.File(label="Download Task Performance")
|
| 414 |
-
btn2.click(plot_task_performance, outputs=[img2, img2_download])
|
| 415 |
-
|
| 416 |
-
with gr.Row():
|
| 417 |
-
btn3 = gr.Button("Task-Specific Top Models")
|
| 418 |
-
img3 = gr.Image(type="pil", label="Task-Specific Top Models Plot")
|
| 419 |
-
img3_download = gr.File(label="Download Top Models")
|
| 420 |
-
btn3.click(plot_task_specific_top_models, outputs=[img3, img3_download])
|
| 421 |
-
|
| 422 |
-
with gr.Row():
|
| 423 |
-
btn4 = gr.Button("Plot Performance Heatmap")
|
| 424 |
-
heatmap_img = gr.Image(type="pil", label="Performance Heatmap")
|
| 425 |
-
heatmap_download = gr.File(label="Download Heatmap")
|
| 426 |
-
btn4.click(plot_heatmap, outputs=[heatmap_img, heatmap_download])
|
| 427 |
-
|
| 428 |
-
with gr.Row():
|
| 429 |
-
model_selector = gr.Dropdown(choices=df_full["Model Configuration"].tolist(), label="Select a Model")
|
| 430 |
-
with gr.Column():
|
| 431 |
-
scrape_btn = gr.Button("Scrape MergeKit Configuration")
|
| 432 |
-
yaml_output = gr.Textbox(lines=10, placeholder="YAML Configuration will appear here.")
|
| 433 |
-
scrape_btn.click(scrape_mergekit_config, inputs=model_selector, outputs=yaml_output)
|
| 434 |
-
with gr.Column():
|
| 435 |
-
save_yaml_btn = gr.Button("Save MergeKit Configuration")
|
| 436 |
-
yaml_download = gr.File(label="Download MergeKit Configuration")
|
| 437 |
-
save_yaml_btn.click(download_yaml, inputs=[yaml_output, model_selector], outputs=yaml_download)
|
| 438 |
-
|
| 439 |
-
with gr.Row():
|
| 440 |
-
download_all_btn = gr.Button("Download Everything")
|
| 441 |
-
all_downloads = gr.File(label="Download All Data")
|
| 442 |
-
download_all_btn.click(download_all_data, outputs=all_downloads)
|
| 443 |
-
|
| 444 |
-
gr.Markdown("## Live Scraping Features")
|
| 445 |
-
with gr.Row():
|
| 446 |
-
url_input = gr.Textbox(label="Enter Hugging Face Model URL", placeholder="https://huggingface.co/<model>")
|
| 447 |
-
live_scrape_btn = gr.Button("Scrape Model Page")
|
| 448 |
-
live_scrape_output = gr.Textbox(label="Scraped Data", lines=15)
|
| 449 |
-
live_scrape_btn.click(display_scraped_model_data, inputs=url_input, outputs=live_scrape_output)
|
| 450 |
-
|
| 451 |
-
# NEW TAB: Show the parsed benchmark results from your big script run
|
| 452 |
-
with gr.Tab("Parsed Benchmark Results"):
|
| 453 |
-
gr.Markdown("Here is the aggregated set of benchmark scores & configurations obtained from your script:")
|
| 454 |
-
show_results_btn = gr.Button("Show Parsed Results")
|
| 455 |
-
results_box = gr.Textbox(label="Benchmark Results", lines=30)
|
| 456 |
-
|
| 457 |
-
# When user clicks the button, show the giant text block in the textbox
|
| 458 |
-
show_results_btn.click(fn=view_parsed_benchmark_results, outputs=results_box)
|
| 459 |
|
| 460 |
demo.launch()
|
|
|
|
| 1 |
+
import io
|
| 2 |
+
import sys
|
|
|
|
|
|
|
| 3 |
import requests
|
| 4 |
from bs4 import BeautifulSoup
|
| 5 |
+
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
+
# ---------------------------------------------------------
|
| 8 |
+
# PART 1: FULL BENCHMARK DATA (Rank 44 through 105)
|
| 9 |
+
# ---------------------------------------------------------
|
| 10 |
+
# For each model, we store:
|
| 11 |
+
# - rank (int)
|
| 12 |
+
# - name (str)
|
| 13 |
+
# - scores (dict) with keys: average, IFEval, BBH, MATH, GPQA, MUSR, MMLU-PRO
|
| 14 |
+
# - known_config (dict if found, or None if no config)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
+
benchmark_data = [
|
| 17 |
+
{
|
| 18 |
+
"rank": 44,
|
| 19 |
+
"name": "sometimesanotion/Qwen2.5-14B-Vimarckoso-v3",
|
| 20 |
+
"scores": {
|
| 21 |
+
"average": 40.10,
|
| 22 |
+
"IFEval": 72.57,
|
| 23 |
+
"BBH": 48.58,
|
| 24 |
+
"MATH": 34.44,
|
| 25 |
+
"GPQA": 17.34,
|
| 26 |
+
"MUSR": 19.39,
|
| 27 |
+
"MMLU-PRO": 48.26
|
| 28 |
+
},
|
| 29 |
+
"known_config": {
|
| 30 |
+
"models": [
|
| 31 |
+
{"model": "CultriX/SeQwence-14Bv1"},
|
| 32 |
+
{"model": "allknowingroger/Qwenslerp5-14B"}
|
| 33 |
+
],
|
| 34 |
+
"merge_method": "slerp",
|
| 35 |
+
"base_model": "CultriX/SeQwence-14Bv1",
|
| 36 |
+
"dtype": "bfloat16",
|
| 37 |
+
"parameters": {
|
| 38 |
+
"t": [0, 0.5, 1, 0.5, 0]
|
| 39 |
+
}
|
| 40 |
+
}
|
| 41 |
+
},
|
| 42 |
+
{
|
| 43 |
+
"rank": 45,
|
| 44 |
+
"name": "sthenno-com/miscii-14b-1225",
|
| 45 |
+
"scores": {
|
| 46 |
+
"average": 40.08,
|
| 47 |
+
"IFEval": 78.78,
|
| 48 |
+
"BBH": 50.91,
|
| 49 |
+
"MATH": 31.57,
|
| 50 |
+
"GPQA": 17.00,
|
| 51 |
+
"MUSR": 14.77,
|
| 52 |
+
"MMLU-PRO": 47.46
|
| 53 |
+
},
|
| 54 |
+
"known_config": {
|
| 55 |
+
"tokenizer_source": "base",
|
| 56 |
+
"chat_template": "chatml",
|
| 57 |
+
"merge_method": "ties",
|
| 58 |
+
"dtype": "bfloat16",
|
| 59 |
+
"parameters": {
|
| 60 |
+
"normalize": True
|
| 61 |
+
},
|
| 62 |
+
"base_model": "sthenno-com/miscii-14b-1028",
|
| 63 |
+
"models": [
|
| 64 |
+
{
|
| 65 |
+
"model": "sthenno-com/miscii-14b-1028",
|
| 66 |
+
"parameters": {
|
| 67 |
+
"weight": 1,
|
| 68 |
+
"density": 0.5
|
| 69 |
+
}
|
| 70 |
+
},
|
| 71 |
+
{
|
| 72 |
+
"model": "sthenno/miscii-1218",
|
| 73 |
+
"parameters": {
|
| 74 |
+
"weight": 1,
|
| 75 |
+
"density": 0.5
|
| 76 |
+
}
|
| 77 |
+
},
|
| 78 |
+
{
|
| 79 |
+
"model": "sthenno/exp-002",
|
| 80 |
+
"parameters": {
|
| 81 |
+
"weight": 0.9,
|
| 82 |
+
"density": 0.5
|
| 83 |
+
}
|
| 84 |
+
},
|
| 85 |
+
{
|
| 86 |
+
"model": "sthenno/miscii-1218",
|
| 87 |
+
"parameters": {
|
| 88 |
+
"weight": 0.6,
|
| 89 |
+
"density": 0.5
|
| 90 |
+
}
|
| 91 |
+
}
|
| 92 |
+
]
|
| 93 |
+
}
|
| 94 |
+
},
|
| 95 |
+
{
|
| 96 |
+
"rank": 46,
|
| 97 |
+
"name": "djuna/Q2.5-Veltha-14B-0.5",
|
| 98 |
+
"scores": {
|
| 99 |
+
"average": 39.96,
|
| 100 |
+
"IFEval": 77.96,
|
| 101 |
+
"BBH": 50.32,
|
| 102 |
+
"MATH": 33.84,
|
| 103 |
+
"GPQA": 15.77,
|
| 104 |
+
"MUSR": 14.17,
|
| 105 |
+
"MMLU-PRO": 47.72
|
| 106 |
+
},
|
| 107 |
+
"known_config": {
|
| 108 |
+
"merge_method": "della_linear",
|
| 109 |
+
"dtype": "float32",
|
| 110 |
+
"out_dtype": "bfloat16",
|
| 111 |
+
"parameters": {
|
| 112 |
+
"epsilon": 0.04,
|
| 113 |
+
"lambda": 1.05,
|
| 114 |
+
"normalize": True
|
| 115 |
+
},
|
| 116 |
+
"base_model": "arcee-ai/SuperNova-Medius",
|
| 117 |
+
"tokenizer_source": "arcee-ai/SuperNova-Medius",
|
| 118 |
+
"models": [
|
| 119 |
+
{
|
| 120 |
+
"model": "arcee-ai/SuperNova-Medius",
|
| 121 |
+
"parameters": {
|
| 122 |
+
"weight": 10,
|
| 123 |
+
"density": 1
|
| 124 |
+
}
|
| 125 |
+
},
|
| 126 |
+
{
|
| 127 |
+
"model": "EVA-UNIT-01/EVA-Qwen2.5-14B-v0.2",
|
| 128 |
+
"parameters": {
|
| 129 |
+
"weight": 7,
|
| 130 |
+
"density": 0.5
|
| 131 |
+
}
|
| 132 |
+
},
|
| 133 |
+
{
|
| 134 |
+
"model": "v000000/Qwen2.5-Lumen-14B",
|
| 135 |
+
"parameters": {
|
| 136 |
+
"weight": 7,
|
| 137 |
+
"density": 0.4
|
| 138 |
+
}
|
| 139 |
+
},
|
| 140 |
+
{
|
| 141 |
+
"model": "allura-org/TQ2.5-14B-Aletheia-v1",
|
| 142 |
+
"parameters": {
|
| 143 |
+
"weight": 8,
|
| 144 |
+
"density": 0.4
|
| 145 |
+
}
|
| 146 |
+
},
|
| 147 |
+
{
|
| 148 |
+
"model": "huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2",
|
| 149 |
+
"parameters": {
|
| 150 |
+
"weight": 8,
|
| 151 |
+
"density": 0.45
|
| 152 |
+
}
|
| 153 |
+
}
|
| 154 |
+
]
|
| 155 |
+
}
|
| 156 |
+
},
|
| 157 |
+
{
|
| 158 |
+
"rank": 48,
|
| 159 |
+
"name": "sometimesanotion/Qwen2.5-14B-Vimarckoso-v3-model_stock",
|
| 160 |
+
"scores": {
|
| 161 |
+
"average": 39.81,
|
| 162 |
+
"IFEval": 71.62,
|
| 163 |
+
"BBH": 48.76,
|
| 164 |
+
"MATH": 33.99,
|
| 165 |
+
"GPQA": 17.34,
|
| 166 |
+
"MUSR": 19.23,
|
| 167 |
+
"MMLU-PRO": 47.95
|
| 168 |
+
},
|
| 169 |
+
"known_config": None
|
| 170 |
+
},
|
| 171 |
+
{
|
| 172 |
+
"rank": 50,
|
| 173 |
+
"name": "sometimesanotion/Qwen2.5-14B-Vimarckoso-v3-Prose01",
|
| 174 |
+
"scores": {
|
| 175 |
+
"average": 39.46,
|
| 176 |
+
"IFEval": 68.72,
|
| 177 |
+
"BBH": 47.71,
|
| 178 |
+
"MATH": 35.05,
|
| 179 |
+
"GPQA": 18.23,
|
| 180 |
+
"MUSR": 19.56,
|
| 181 |
+
"MMLU-PRO": 47.50
|
| 182 |
+
},
|
| 183 |
+
"known_config": None
|
| 184 |
+
},
|
| 185 |
+
{
|
| 186 |
+
"rank": 52,
|
| 187 |
+
"name": "arcee-ai/Virtuoso-Small",
|
| 188 |
+
"scores": {
|
| 189 |
+
"average": 39.43,
|
| 190 |
+
"IFEval": 79.35,
|
| 191 |
+
"BBH": 50.40,
|
| 192 |
+
"MATH": 34.29,
|
| 193 |
+
"GPQA": 11.52,
|
| 194 |
+
"MUSR": 14.44,
|
| 195 |
+
"MMLU-PRO": 46.57
|
| 196 |
+
},
|
| 197 |
+
"known_config": None
|
| 198 |
+
},
|
| 199 |
+
{
|
| 200 |
+
"rank": 54,
|
| 201 |
+
"name": "sometimesanotion/Qwentinuum-14B-v6",
|
| 202 |
+
"scores": {
|
| 203 |
+
"average": 39.23,
|
| 204 |
+
"IFEval": 63.04,
|
| 205 |
+
"BBH": 50.23,
|
| 206 |
+
"MATH": 33.84,
|
| 207 |
+
"GPQA": 18.23,
|
| 208 |
+
"MUSR": 21.18,
|
| 209 |
+
"MMLU-PRO": 48.89
|
| 210 |
+
},
|
| 211 |
+
"known_config": None
|
| 212 |
+
},
|
| 213 |
+
{
|
| 214 |
+
"rank": 55,
|
| 215 |
+
"name": "djuna/Q2.5-Veltha-14B",
|
| 216 |
+
"scores": {
|
| 217 |
+
"average": 39.21,
|
| 218 |
+
"IFEval": 82.92,
|
| 219 |
+
"BBH": 49.75,
|
| 220 |
+
"MATH": 28.02,
|
| 221 |
+
"GPQA": 14.54,
|
| 222 |
+
"MUSR": 12.26,
|
| 223 |
+
"MMLU-PRO": 47.76
|
| 224 |
+
},
|
| 225 |
+
"known_config": {
|
| 226 |
+
"merge_method": "della_linear",
|
| 227 |
+
"dtype": "float32",
|
| 228 |
+
"out_dtype": "bfloat16",
|
| 229 |
+
"parameters": {
|
| 230 |
+
"epsilon": 0.04,
|
| 231 |
+
"lambda": 1.05,
|
| 232 |
+
"normalize": True
|
| 233 |
+
},
|
| 234 |
+
"base_model": "qwen/Qwen2.5-14b",
|
| 235 |
+
"tokenizer_source": "arcee-ai/SuperNova-Medius",
|
| 236 |
+
"models": [
|
| 237 |
+
{
|
| 238 |
+
"model": "arcee-ai/SuperNova-Medius",
|
| 239 |
+
"parameters": {
|
| 240 |
+
"weight": 10,
|
| 241 |
+
"density": 1
|
| 242 |
+
}
|
| 243 |
+
},
|
| 244 |
+
{
|
| 245 |
+
"model": "EVA-UNIT-01/EVA-Qwen2.5-14B-v0.2",
|
| 246 |
+
"parameters": {
|
| 247 |
+
"weight": 7,
|
| 248 |
+
"density": 0.5
|
| 249 |
+
}
|
| 250 |
+
},
|
| 251 |
+
{
|
| 252 |
+
"model": "v000000/Qwen2.5-Lumen-14B",
|
| 253 |
+
"parameters": {
|
| 254 |
+
"weight": 7,
|
| 255 |
+
"density": 0.4
|
| 256 |
+
}
|
| 257 |
+
},
|
| 258 |
+
{
|
| 259 |
+
"model": "allura-org/TQ2.5-14B-Aletheia-v1",
|
| 260 |
+
"parameters": {
|
| 261 |
+
"weight": 8,
|
| 262 |
+
"density": 0.4
|
| 263 |
+
}
|
| 264 |
+
},
|
| 265 |
+
{
|
| 266 |
+
"model": "huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2",
|
| 267 |
+
"parameters": {
|
| 268 |
+
"weight": 8,
|
| 269 |
+
"density": 0.45
|
| 270 |
+
}
|
| 271 |
+
}
|
| 272 |
+
]
|
| 273 |
+
}
|
| 274 |
+
},
|
| 275 |
+
{
|
| 276 |
+
"rank": 57,
|
| 277 |
+
"name": "allknowingroger/QwenSlerp6-14B",
|
| 278 |
+
"scores": {
|
| 279 |
+
"average": 39.02,
|
| 280 |
+
"IFEval": 68.67,
|
| 281 |
+
"BBH": 47.59,
|
| 282 |
+
"MATH": 34.14,
|
| 283 |
+
"GPQA": 16.44,
|
| 284 |
+
"MUSR": 18.32,
|
| 285 |
+
"MMLU-PRO": 48.95
|
| 286 |
+
},
|
| 287 |
+
"known_config": {
|
| 288 |
+
"models": [
|
| 289 |
+
{"model": "CultriX/SeQwence-14Bv1"},
|
| 290 |
+
{"model": "allknowingroger/Qwenslerp2-14B"}
|
| 291 |
+
],
|
| 292 |
+
"merge_method": "slerp",
|
| 293 |
+
"base_model": "CultriX/SeQwence-14Bv1",
|
| 294 |
+
"dtype": "bfloat16",
|
| 295 |
+
"parameters": {
|
| 296 |
+
"t": [0, 0.5, 1, 0.5, 0]
|
| 297 |
+
}
|
| 298 |
+
}
|
| 299 |
+
},
|
| 300 |
+
{
|
| 301 |
+
"rank": 58,
|
| 302 |
+
"name": "allknowingroger/QwenSlerp5-14B",
|
| 303 |
+
"scores": {
|
| 304 |
+
"average": 38.94,
|
| 305 |
+
"IFEval": 71.19,
|
| 306 |
+
"BBH": 47.39,
|
| 307 |
+
"MATH": 33.16,
|
| 308 |
+
"GPQA": 15.32,
|
| 309 |
+
"MUSR": 17.81,
|
| 310 |
+
"MMLU-PRO": 48.78
|
| 311 |
+
},
|
| 312 |
+
"known_config": {
|
| 313 |
+
"models": [
|
| 314 |
+
{"model": "CultriX/SeQwence-14Bv1"},
|
| 315 |
+
{"model": "CultriX/Qwestion-14B"}
|
| 316 |
+
],
|
| 317 |
+
"merge_method": "slerp",
|
| 318 |
+
"base_model": "CultriX/SeQwence-14Bv1",
|
| 319 |
+
"dtype": "bfloat16",
|
| 320 |
+
"parameters": {
|
| 321 |
+
"t": [0, 0.5, 1, 0.5, 0]
|
| 322 |
+
}
|
| 323 |
+
}
|
| 324 |
+
},
|
| 325 |
+
{
|
| 326 |
+
"rank": 59,
|
| 327 |
+
"name": "sometimesanotion/Qwentinuum-14B-v5",
|
| 328 |
+
"scores": {
|
| 329 |
+
"average": 38.87,
|
| 330 |
+
"IFEval": 62.86,
|
| 331 |
+
"BBH": 50.28,
|
| 332 |
+
"MATH": 31.57,
|
| 333 |
+
"GPQA": 18.34,
|
| 334 |
+
"MUSR": 21.09,
|
| 335 |
+
"MMLU-PRO": 49.09
|
| 336 |
+
},
|
| 337 |
+
"known_config": None
|
| 338 |
+
},
|
| 339 |
+
{
|
| 340 |
+
"rank": 60,
|
| 341 |
+
"name": "sometimesanotion/Qwenvergence-14B-v6-Prose",
|
| 342 |
+
"scores": {
|
| 343 |
+
"average": 38.82,
|
| 344 |
+
"IFEval": 59.90,
|
| 345 |
+
"BBH": 50.12,
|
| 346 |
+
"MATH": 34.89,
|
| 347 |
+
"GPQA": 18.46,
|
| 348 |
+
"MUSR": 21.02,
|
| 349 |
+
"MMLU-PRO": 48.56
|
| 350 |
+
},
|
| 351 |
+
"known_config": {
|
| 352 |
+
# This model had two YAML segments:
|
| 353 |
+
# We'll store them in a single dictionary with keys "config1" and "config2" to preserve them:
|
| 354 |
+
"config1": {
|
| 355 |
+
"name": "Qwenvergence-14B-v6-Prose-model_stock",
|
| 356 |
+
"merge_method": "model_stock",
|
| 357 |
+
"base_model": "Qwen/Qwen2.5-14B",
|
| 358 |
+
"tokenizer_source": "huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2",
|
| 359 |
+
"parameters": {
|
| 360 |
+
"int8_mask": True,
|
| 361 |
+
"normalize": True,
|
| 362 |
+
"rescale": False
|
| 363 |
+
},
|
| 364 |
+
"models": [
|
| 365 |
+
"arcee-ai/Virtuoso-Small",
|
| 366 |
+
"sometimesanotion/Lamarck-14B-v0.3",
|
| 367 |
+
"EVA-UNIT-01/EVA-Qwen2.5-14B-v0.2",
|
| 368 |
+
"allura-org/TQ2.5-14B-Sugarquill-v1",
|
| 369 |
+
"oxyapi/oxy-1-small",
|
| 370 |
+
"v000000/Qwen2.5-Lumen-14B",
|
| 371 |
+
"sthenno-com/miscii-14b-1225",
|
| 372 |
+
"sthenno-com/miscii-14b-1225",
|
| 373 |
+
"underwoods/medius-erebus-magnum-14b",
|
| 374 |
+
"huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2"
|
| 375 |
+
],
|
| 376 |
+
"dtype": "float32",
|
| 377 |
+
"out_dtype": "bfloat16"
|
| 378 |
+
},
|
| 379 |
+
"config2": {
|
| 380 |
+
"name": "Qwenvergence-14B-v6-Prose",
|
| 381 |
+
"merge_method": "ties",
|
| 382 |
+
"base_model": "Qwen/Qwen2.5-14B",
|
| 383 |
+
"tokenizer_source": "base",
|
| 384 |
+
"parameters": {
|
| 385 |
+
"density": 1.00,
|
| 386 |
+
"weight": 1.00,
|
| 387 |
+
"int8_mask": True,
|
| 388 |
+
"normalize": True,
|
| 389 |
+
"rescale": False
|
| 390 |
+
},
|
| 391 |
+
"dtype": "float32",
|
| 392 |
+
"out_dtype": "bfloat16",
|
| 393 |
+
"models": [
|
| 394 |
+
{
|
| 395 |
+
"model": "sometimesanotion/Qwenvergence-14B-v6-Prose-slerp",
|
| 396 |
+
"parameters": {
|
| 397 |
+
"density": 1.00,
|
| 398 |
+
"weight": 1.00
|
| 399 |
+
}
|
| 400 |
+
}
|
| 401 |
+
]
|
| 402 |
+
}
|
| 403 |
+
}
|
| 404 |
+
},
|
| 405 |
+
{
|
| 406 |
+
"rank": 61,
|
| 407 |
+
"name": "CultriX/Qwen2.5-14B-Brocav3",
|
| 408 |
+
"scores": {
|
| 409 |
+
"average": 38.76,
|
| 410 |
+
"IFEval": 69.52,
|
| 411 |
+
"BBH": 49.05,
|
| 412 |
+
"MATH": 32.25,
|
| 413 |
+
"GPQA": 14.54,
|
| 414 |
+
"MUSR": 19.25,
|
| 415 |
+
"MMLU-PRO": 47.97
|
| 416 |
+
},
|
| 417 |
+
"known_config": {
|
| 418 |
+
"merge_method": "della_linear",
|
| 419 |
+
"base_model": "CultriX/Qwen2.5-14B-Wernickev3",
|
| 420 |
+
"dtype": "bfloat16",
|
| 421 |
+
"parameters": {
|
| 422 |
+
"epsilon": 0.012,
|
| 423 |
+
"lambda": 1.4,
|
| 424 |
+
"normalize": True
|
| 425 |
+
},
|
| 426 |
+
"adaptive_merge_parameters": {
|
| 427 |
+
"task_weights": {
|
| 428 |
+
"tinyArc": 1.6,
|
| 429 |
+
"tinyHellaswag": 1.5,
|
| 430 |
+
"tinyMMLU": 1.65,
|
| 431 |
+
"tinyTruthfulQA": 1.9,
|
| 432 |
+
"tinyTruthfulQA_mc1": 1.7,
|
| 433 |
+
"tinyWinogrande": 1.75,
|
| 434 |
+
"IFEval": 1.9,
|
| 435 |
+
"BBH": 1.7,
|
| 436 |
+
"MATH": 2.1,
|
| 437 |
+
"GPQA": 1.8,
|
| 438 |
+
"MUSR": 1.9,
|
| 439 |
+
"MMLU-PRO": 1.8
|
| 440 |
+
},
|
| 441 |
+
"smoothing_factor": 0.1
|
| 442 |
+
},
|
| 443 |
+
"gradient_clipping": {
|
| 444 |
+
"CultriX/Qwen2.5-14B-Wernickev3": 0.86,
|
| 445 |
+
"CultriX/Qwenfinity-2.5-14B": 0.83,
|
| 446 |
+
"djuna/Q2.5-Veltha-14B-0.5": 0.91,
|
| 447 |
+
"CultriX/Qwen2.5-14B-Broca": 0.85,
|
| 448 |
+
"qingy2019/Qwen2.5-Math-14B-Instruct": 0.93,
|
| 449 |
+
"CultriX/SeQwence-14Bv1": 0.88,
|
| 450 |
+
"sometimesanotion/Qwen2.5-14B-Vimarckoso": 0.89,
|
| 451 |
+
"allknowingroger/QwenSlerp6-14B": 0.87
|
| 452 |
+
},
|
| 453 |
+
"models": [
|
| 454 |
+
{
|
| 455 |
+
"model": "CultriX/Qwen2.5-14B-Wernickev3",
|
| 456 |
+
"parameters": {
|
| 457 |
+
"weight": 0.26,
|
| 458 |
+
"density": 0.7
|
| 459 |
+
}
|
| 460 |
+
},
|
| 461 |
+
{
|
| 462 |
+
"model": "CultriX/Qwenfinity-2.5-14B",
|
| 463 |
+
"parameters": {
|
| 464 |
+
"weight": 0.23,
|
| 465 |
+
"density": 0.65
|
| 466 |
+
}
|
| 467 |
+
},
|
| 468 |
+
{
|
| 469 |
+
"model": "djuna/Q2.5-Veltha-14B-0.5",
|
| 470 |
+
"parameters": {
|
| 471 |
+
"weight": 0.22,
|
| 472 |
+
"density": 0.72
|
| 473 |
+
}
|
| 474 |
+
},
|
| 475 |
+
{
|
| 476 |
+
"model": "CultriX/Qwen2.5-14B-Broca",
|
| 477 |
+
"parameters": {
|
| 478 |
+
"weight": 0.15,
|
| 479 |
+
"density": 0.65
|
| 480 |
+
}
|
| 481 |
+
},
|
| 482 |
+
{
|
| 483 |
+
"model": "qingy2019/Qwen2.5-Math-14B-Instruct",
|
| 484 |
+
"parameters": {
|
| 485 |
+
"weight": 0.18,
|
| 486 |
+
"density": 0.73
|
| 487 |
+
}
|
| 488 |
+
},
|
| 489 |
+
{
|
| 490 |
+
"model": "CultriX/SeQwence-14Bv1",
|
| 491 |
+
"parameters": {
|
| 492 |
+
"weight": 0.14,
|
| 493 |
+
"density": 0.63
|
| 494 |
+
}
|
| 495 |
+
},
|
| 496 |
+
{
|
| 497 |
+
"model": "sometimesanotion/Qwen2.5-14B-Vimarckoso",
|
| 498 |
+
"parameters": {
|
| 499 |
+
"weight": 0.12,
|
| 500 |
+
"density": 0.6
|
| 501 |
+
}
|
| 502 |
+
},
|
| 503 |
+
{
|
| 504 |
+
"model": "allknowingroger/QwenSlerp6-14B",
|
| 505 |
+
"parameters": {
|
| 506 |
+
"weight": 0.1,
|
| 507 |
+
"density": 0.62
|
| 508 |
+
}
|
| 509 |
+
}
|
| 510 |
+
],
|
| 511 |
+
"tokenizer_source": "CultriX/Qwen2.5-14B-Wernickev3"
|
| 512 |
+
}
|
| 513 |
+
},
|
| 514 |
+
{
|
| 515 |
+
"rank": 62,
|
| 516 |
+
"name": "sometimesanotion/Qwentinuum-14B-v7",
|
| 517 |
+
"scores": {
|
| 518 |
+
"average": 38.76,
|
| 519 |
+
"IFEval": 61.09,
|
| 520 |
+
"BBH": 50.35,
|
| 521 |
+
"MATH": 33.38,
|
| 522 |
+
"GPQA": 18.79,
|
| 523 |
+
"MUSR": 19.95,
|
| 524 |
+
"MMLU-PRO": 49.00
|
| 525 |
+
},
|
| 526 |
+
"known_config": None
|
| 527 |
+
},
|
| 528 |
+
{
|
| 529 |
+
"rank": 64,
|
| 530 |
+
"name": "sometimesanotion/Qwentinuum-14B-v3",
|
| 531 |
+
"scores": {
|
| 532 |
+
"average": 38.74,
|
| 533 |
+
"IFEval": 61.58,
|
| 534 |
+
"BBH": 50.04,
|
| 535 |
+
"MATH": 32.85,
|
| 536 |
+
"GPQA": 18.34,
|
| 537 |
+
"MUSR": 20.62,
|
| 538 |
+
"MMLU-PRO": 49.03
|
| 539 |
+
},
|
| 540 |
+
"known_config": None
|
| 541 |
+
},
|
| 542 |
+
{
|
| 543 |
+
"rank": 65,
|
| 544 |
+
"name": "allura-org/TQ2.5-14B-Aletheia-v1",
|
| 545 |
+
"scores": {
|
| 546 |
+
"average": 38.74,
|
| 547 |
+
"IFEval": 75.30,
|
| 548 |
+
"BBH": 50.88,
|
| 549 |
+
"MATH": 29.53,
|
| 550 |
+
"GPQA": 14.99,
|
| 551 |
+
"MUSR": 14.61,
|
| 552 |
+
"MMLU-PRO": 47.12
|
| 553 |
+
},
|
| 554 |
+
# The snippet had:
|
| 555 |
+
# <|im_start|>system
|
| 556 |
+
# ...
|
| 557 |
+
# This was presumably some leftover system text. We'll treat it as config, or None.
|
| 558 |
+
# We'll store it as a minimal known_config example:
|
| 559 |
+
"known_config": {
|
| 560 |
+
"system_text_example": "<|im_start|>system ... <|im_end|>"
|
| 561 |
+
}
|
| 562 |
+
},
|
| 563 |
+
{
|
| 564 |
+
"rank": 66,
|
| 565 |
+
"name": "qingy2024/Fusion4-14B-Instruct",
|
| 566 |
+
"scores": {
|
| 567 |
+
"average": 38.73,
|
| 568 |
+
"IFEval": 76.49,
|
| 569 |
+
"BBH": 50.70,
|
| 570 |
+
"MATH": 33.91,
|
| 571 |
+
"GPQA": 10.74,
|
| 572 |
+
"MUSR": 13.97,
|
| 573 |
+
"MMLU-PRO": 46.60
|
| 574 |
+
},
|
| 575 |
+
"known_config": {
|
| 576 |
+
"models": [
|
| 577 |
+
{
|
| 578 |
+
"model": "arcee-ai/Virtuoso-Small",
|
| 579 |
+
"parameters": {
|
| 580 |
+
"weight": 1,
|
| 581 |
+
"density": 1
|
| 582 |
+
}
|
| 583 |
+
}
|
| 584 |
+
],
|
| 585 |
+
"merge_method": "ties",
|
| 586 |
+
"base_model": "Qwen/Qwen2.5-14B",
|
| 587 |
+
"parameters": {
|
| 588 |
+
"weight": 1,
|
| 589 |
+
"density": 1,
|
| 590 |
+
"normalize": True,
|
| 591 |
+
"int8_mask": True
|
| 592 |
+
},
|
| 593 |
+
"dtype": "float16"
|
| 594 |
+
}
|
| 595 |
+
},
|
| 596 |
+
{
|
| 597 |
+
"rank": 68,
|
| 598 |
+
"name": "CultriX/Qwen2.5-14B-Brocav7",
|
| 599 |
+
"scores": {
|
| 600 |
+
"average": 38.52,
|
| 601 |
+
"IFEval": 67.24,
|
| 602 |
+
"BBH": 48.91,
|
| 603 |
+
"MATH": 31.87,
|
| 604 |
+
"GPQA": 15.66,
|
| 605 |
+
"MUSR": 20.15,
|
| 606 |
+
"MMLU-PRO": 47.31
|
| 607 |
+
},
|
| 608 |
+
"known_config": {
|
| 609 |
+
"merge_method": "della_linear",
|
| 610 |
+
"base_model": "CultriX/Qwen2.5-14B-Wernickev3",
|
| 611 |
+
"dtype": "bfloat16",
|
| 612 |
+
"parameters": {
|
| 613 |
+
"epsilon": 0.01,
|
| 614 |
+
"lambda": 1.5,
|
| 615 |
+
"normalize": True,
|
| 616 |
+
"smoothing_factor": 0.08
|
| 617 |
+
},
|
| 618 |
+
"gradient_clipping": {
|
| 619 |
+
"CultriX/Qwen2.5-14B-Wernickev3": 0.85,
|
| 620 |
+
"CultriX/Qwenfinity-2.5-14B": 0.82,
|
| 621 |
+
"djuna/Q2.5-Veltha-14B-0.5": 0.92,
|
| 622 |
+
"CultriX/Qwen2.5-14B-Broca": 0.86,
|
| 623 |
+
"qingy2019/Qwen2.5-Math-14B-Instruct": 0.94,
|
| 624 |
+
"CultriX/SeQwence-14Bv1": 0.87,
|
| 625 |
+
"sometimesanotion/Qwen2.5-14B-Vimarckoso": 0.90,
|
| 626 |
+
"allknowingroger/QwenSlerp6-14B": 0.86
|
| 627 |
+
},
|
| 628 |
+
"models": [
|
| 629 |
+
{
|
| 630 |
+
"model": "CultriX/Qwen2.5-14B-Wernickev3",
|
| 631 |
+
"parameters": {
|
| 632 |
+
"weight": 0.25,
|
| 633 |
+
"density": 0.72
|
| 634 |
+
}
|
| 635 |
+
},
|
| 636 |
+
{
|
| 637 |
+
"model": "CultriX/Qwenfinity-2.5-14B",
|
| 638 |
+
"parameters": {
|
| 639 |
+
"weight": 0.22,
|
| 640 |
+
"density": 0.68
|
| 641 |
+
}
|
| 642 |
+
},
|
| 643 |
+
{
|
| 644 |
+
"model": "djuna/Q2.5-Veltha-14B-0.5",
|
| 645 |
+
"parameters": {
|
| 646 |
+
"weight": 0.20,
|
| 647 |
+
"density": 0.75
|
| 648 |
+
}
|
| 649 |
+
},
|
| 650 |
+
{
|
| 651 |
+
"model": "CultriX/Qwen2.5-14B-Broca",
|
| 652 |
+
"parameters": {
|
| 653 |
+
"weight": 0.16,
|
| 654 |
+
"density": 0.68
|
| 655 |
+
}
|
| 656 |
+
},
|
| 657 |
+
{
|
| 658 |
+
"model": "qingy2019/Qwen2.5-Math-14B-Instruct",
|
| 659 |
+
"parameters": {
|
| 660 |
+
"weight": 0.19,
|
| 661 |
+
"density": 0.75
|
| 662 |
+
}
|
| 663 |
+
},
|
| 664 |
+
{
|
| 665 |
+
"model": "CultriX/SeQwence-14Bv1",
|
| 666 |
+
"parameters": {
|
| 667 |
+
"weight": 0.13,
|
| 668 |
+
"density": 0.65
|
| 669 |
+
}
|
| 670 |
+
},
|
| 671 |
+
{
|
| 672 |
+
"model": "sometimesanotion/Qwen2.5-14B-Vimarckoso",
|
| 673 |
+
"parameters": {
|
| 674 |
+
"weight": 0.11,
|
| 675 |
+
"density": 0.62
|
| 676 |
+
}
|
| 677 |
+
},
|
| 678 |
+
{
|
| 679 |
+
"model": "allknowingroger/QwenSlerp6-14B",
|
| 680 |
+
"parameters": {
|
| 681 |
+
"weight": 0.09,
|
| 682 |
+
"density": 0.65
|
| 683 |
+
}
|
| 684 |
+
}
|
| 685 |
+
],
|
| 686 |
+
"adaptive_merge_parameters": {
|
| 687 |
+
"task_weights": {
|
| 688 |
+
"tinyArc": 1.65,
|
| 689 |
+
"tinyHellaswag": 1.55,
|
| 690 |
+
"tinyMMLU": 1.7,
|
| 691 |
+
"tinyTruthfulQA": 1.95,
|
| 692 |
+
"tinyTruthfulQA_mc1": 1.75,
|
| 693 |
+
"tinyWinogrande": 1.8,
|
| 694 |
+
"IFEval": 2.0,
|
| 695 |
+
"BBH": 1.75,
|
| 696 |
+
"MATH": 2.2,
|
| 697 |
+
"GPQA": 1.85,
|
| 698 |
+
"MUSR": 1.95,
|
| 699 |
+
"MMLU-PRO": 1.85
|
| 700 |
+
}
|
| 701 |
+
},
|
| 702 |
+
"tokenizer_source": "CultriX/Qwen2.5-14B-Wernickev3"
|
| 703 |
+
}
|
| 704 |
+
},
|
| 705 |
+
{
|
| 706 |
+
"rank": 71,
|
| 707 |
+
"name": "sometimesanotion/Qwentinuum-14B-v6-Prose",
|
| 708 |
+
"scores": {
|
| 709 |
+
"average": 38.46,
|
| 710 |
+
"IFEval": 56.43,
|
| 711 |
+
"BBH": 50.14,
|
| 712 |
+
"MATH": 35.57,
|
| 713 |
+
"GPQA": 18.46,
|
| 714 |
+
"MUSR": 21.34,
|
| 715 |
+
"MMLU-PRO": 48.80
|
| 716 |
+
},
|
| 717 |
+
"known_config": {
|
| 718 |
+
"name": "Qwentinuum-14B-v6-Prose-slerp",
|
| 719 |
+
"merge_method": "slerp",
|
| 720 |
+
"base_model": "sometimesanotion/Qwenvergence-14B-v6-Prose",
|
| 721 |
+
"tokenizer_source": "sometimesanotion/Qwenvergence-14B-v6-Prose",
|
| 722 |
+
"dtype": "bfloat16",
|
| 723 |
+
"out_dtype": "bfloat16",
|
| 724 |
+
"parameters": {
|
| 725 |
+
"int8_mask": True,
|
| 726 |
+
"normalize": True,
|
| 727 |
+
"rescale": False
|
| 728 |
+
},
|
| 729 |
+
"slices": [
|
| 730 |
+
{
|
| 731 |
+
"sources": [
|
| 732 |
+
{
|
| 733 |
+
"model": "sometimesanotion/Qwenvergence-14B-v6-Prose",
|
| 734 |
+
"layer_range": [0, 8]
|
| 735 |
+
},
|
| 736 |
+
{
|
| 737 |
+
"model": "sometimesanotion/Qwentinuum-14B-v6",
|
| 738 |
+
"layer_range": [0, 8]
|
| 739 |
+
}
|
| 740 |
+
]
|
| 741 |
+
},
|
| 742 |
+
{
|
| 743 |
+
"sources": [
|
| 744 |
+
{
|
| 745 |
+
"model": "sometimesanotion/Qwenvergence-14B-v6-Prose",
|
| 746 |
+
"layer_range": [8, 16]
|
| 747 |
+
},
|
| 748 |
+
{
|
| 749 |
+
"model": "sometimesanotion/Qwentinuum-14B-v6",
|
| 750 |
+
"layer_range": [8, 16]
|
| 751 |
+
}
|
| 752 |
+
]
|
| 753 |
+
},
|
| 754 |
+
{
|
| 755 |
+
"sources": [
|
| 756 |
+
{
|
| 757 |
+
"model": "sometimesanotion/Qwenvergence-14B-v6-Prose",
|
| 758 |
+
"layer_range": [16, 24]
|
| 759 |
+
},
|
| 760 |
+
{
|
| 761 |
+
"model": "sometimesanotion/Qwentinuum-14B-v6",
|
| 762 |
+
"layer_range": [16, 24]
|
| 763 |
+
}
|
| 764 |
+
]
|
| 765 |
+
},
|
| 766 |
+
{
|
| 767 |
+
"sources": [
|
| 768 |
+
{
|
| 769 |
+
"model": "sometimesanotion/Qwenvergence-14B-v6-Prose",
|
| 770 |
+
"layer_range": [24, 32]
|
| 771 |
+
},
|
| 772 |
+
{
|
| 773 |
+
"model": "sometimesanotion/Qwentinuum-14B-v6",
|
| 774 |
+
"layer_range": [24, 32]
|
| 775 |
+
}
|
| 776 |
+
]
|
| 777 |
+
},
|
| 778 |
+
{
|
| 779 |
+
"sources": [
|
| 780 |
+
{
|
| 781 |
+
"model": "sometimesanotion/Qwenvergence-14B-v6-Prose",
|
| 782 |
+
"layer_range": [32, 40]
|
| 783 |
+
},
|
| 784 |
+
{
|
| 785 |
+
"model": "sometimesanotion/Qwentinuum-14B-v6",
|
| 786 |
+
"layer_range": [32, 40]
|
| 787 |
+
}
|
| 788 |
+
]
|
| 789 |
+
},
|
| 790 |
+
{
|
| 791 |
+
"sources": [
|
| 792 |
+
{
|
| 793 |
+
"model": "sometimesanotion/Qwenvergence-14B-v6-Prose",
|
| 794 |
+
"layer_range": [40, 48]
|
| 795 |
+
},
|
| 796 |
+
{
|
| 797 |
+
"model": "sometimesanotion/Qwentinuum-14B-v6",
|
| 798 |
+
"layer_range": [40, 48]
|
| 799 |
+
}
|
| 800 |
+
]
|
| 801 |
+
}
|
| 802 |
+
],
|
| 803 |
+
# The 'parameters' block that includes "t: 0.40" is implied by the snippet
|
| 804 |
+
}
|
| 805 |
+
},
|
| 806 |
+
{
|
| 807 |
+
"rank": 76,
|
| 808 |
+
"name": "CultriX/Qwen2.5-14B-Brocav6",
|
| 809 |
+
"scores": {
|
| 810 |
+
"average": 38.32,
|
| 811 |
+
"IFEval": 69.95,
|
| 812 |
+
"BBH": 47.82,
|
| 813 |
+
"MATH": 29.61,
|
| 814 |
+
"GPQA": 15.66,
|
| 815 |
+
"MUSR": 18.88,
|
| 816 |
+
"MMLU-PRO": 47.99
|
| 817 |
+
},
|
| 818 |
+
"known_config": {
|
| 819 |
+
"merge_method": "della_linear",
|
| 820 |
+
"base_model": "CultriX/Qwen2.5-14B-Wernickev3",
|
| 821 |
+
"dtype": "bfloat16",
|
| 822 |
+
"parameters": {
|
| 823 |
+
"epsilon": 0.01,
|
| 824 |
+
"lambda": 1.5,
|
| 825 |
+
"normalize": True
|
| 826 |
+
},
|
| 827 |
+
"adaptive_merge_parameters": {
|
| 828 |
+
"task_weights": {
|
| 829 |
+
"tinyArc": 1.65,
|
| 830 |
+
"tinyHellaswag": 1.55,
|
| 831 |
+
"tinyMMLU": 1.7,
|
| 832 |
+
"tinyTruthfulQA": 1.95,
|
| 833 |
+
"tinyTruthfulQA_mc1": 1.75,
|
| 834 |
+
"tinyWinogrande": 1.8,
|
| 835 |
+
"IFEval": 2.0,
|
| 836 |
+
"BBH": 1.75,
|
| 837 |
+
"MATH": 2.2,
|
| 838 |
+
"GPQA": 1.85,
|
| 839 |
+
"MUSR": 1.95,
|
| 840 |
+
"MMLU-PRO": 1.85
|
| 841 |
+
},
|
| 842 |
+
"smoothing_factor": 0.08
|
| 843 |
+
},
|
| 844 |
+
"gradient_clipping": {
|
| 845 |
+
"CultriX/Qwen2.5-14B-Wernickev3": 0.85,
|
| 846 |
+
"CultriX/Qwenfinity-2.5-14B": 0.82,
|
| 847 |
+
"djuna/Q2.5-Veltha-14B-0.5": 0.92,
|
| 848 |
+
"CultriX/Qwen2.5-14B-Broca": 0.86,
|
| 849 |
+
"qingy2019/Qwen2.5-Math-14B-Instruct": 0.94,
|
| 850 |
+
"CultriX/SeQwence-14Bv1": 0.87,
|
| 851 |
+
"sometimesanotion/Qwen2.5-14B-Vimarckoso": 0.90,
|
| 852 |
+
"allknowingroger/QwenSlerp6-14B": 0.86
|
| 853 |
+
},
|
| 854 |
+
"models": [
|
| 855 |
+
{
|
| 856 |
+
"model": "CultriX/Qwen2.5-14B-Wernickev3",
|
| 857 |
+
"parameters": {
|
| 858 |
+
"weight": 0.25,
|
| 859 |
+
"density": 0.72
|
| 860 |
+
}
|
| 861 |
+
},
|
| 862 |
+
{
|
| 863 |
+
"model": "CultriX/Qwenfinity-2.5-14B",
|
| 864 |
+
"parameters": {
|
| 865 |
+
"weight": 0.22,
|
| 866 |
+
"density": 0.68
|
| 867 |
+
}
|
| 868 |
+
},
|
| 869 |
+
{
|
| 870 |
+
"model": "djuna/Q2.5-Veltha-14B-0.5",
|
| 871 |
+
"parameters": {
|
| 872 |
+
"weight": 0.20,
|
| 873 |
+
"density": 0.75
|
| 874 |
+
}
|
| 875 |
+
},
|
| 876 |
+
{
|
| 877 |
+
"model": "CultriX/Qwen2.5-14B-Broca",
|
| 878 |
+
"parameters": {
|
| 879 |
+
"weight": 0.16,
|
| 880 |
+
"density": 0.68
|
| 881 |
+
}
|
| 882 |
+
},
|
| 883 |
+
{
|
| 884 |
+
"model": "qingy2019/Qwen2.5-Math-14B-Instruct",
|
| 885 |
+
"parameters": {
|
| 886 |
+
"weight": 0.19,
|
| 887 |
+
"density": 0.75
|
| 888 |
+
}
|
| 889 |
+
},
|
| 890 |
+
{
|
| 891 |
+
"model": "CultriX/SeQwence-14Bv1",
|
| 892 |
+
"parameters": {
|
| 893 |
+
"weight": 0.13,
|
| 894 |
+
"density": 0.65
|
| 895 |
+
}
|
| 896 |
+
},
|
| 897 |
+
{
|
| 898 |
+
"model": "sometimesanotion/Qwen2.5-14B-Vimarckoso",
|
| 899 |
+
"parameters": {
|
| 900 |
+
"weight": 0.11,
|
| 901 |
+
"density": 0.62
|
| 902 |
+
}
|
| 903 |
+
},
|
| 904 |
+
{
|
| 905 |
+
"model": "allknowingroger/QwenSlerp6-14B",
|
| 906 |
+
"parameters": {
|
| 907 |
+
"weight": 0.09,
|
| 908 |
+
"density": 0.65
|
| 909 |
+
}
|
| 910 |
+
}
|
| 911 |
+
]
|
| 912 |
+
}
|
| 913 |
+
},
|
| 914 |
+
{
|
| 915 |
+
"rank": 80,
|
| 916 |
+
"name": "CultriX/SeQwence-14Bv1",
|
| 917 |
+
"scores": {
|
| 918 |
+
"average": 38.20,
|
| 919 |
+
"IFEval": 66.78,
|
| 920 |
+
"BBH": 47.19,
|
| 921 |
+
"MATH": 33.53,
|
| 922 |
+
"GPQA": 14.88,
|
| 923 |
+
"MUSR": 18.80,
|
| 924 |
+
"MMLU-PRO": 48.00
|
| 925 |
+
},
|
| 926 |
+
"known_config": {
|
| 927 |
+
"models": [
|
| 928 |
+
{
|
| 929 |
+
"model": "CultriX/Qwen2.5-14B-Wernicke",
|
| 930 |
+
"parameters": {
|
| 931 |
+
"weight": 0.35,
|
| 932 |
+
"density": 0.6
|
| 933 |
+
}
|
| 934 |
+
},
|
| 935 |
+
{
|
| 936 |
+
"model": "VAGOsolutions/SauerkrautLM-v2-14b-DPO",
|
| 937 |
+
"parameters": {
|
| 938 |
+
"weight": 0.30,
|
| 939 |
+
"density": 0.6
|
| 940 |
+
}
|
| 941 |
+
},
|
| 942 |
+
{
|
| 943 |
+
"model": "CultriX/Qwen2.5-14B-MegaMerge-pt2",
|
| 944 |
+
"parameters": {
|
| 945 |
+
"weight": 0.20,
|
| 946 |
+
"density": 0.5
|
| 947 |
+
}
|
| 948 |
+
},
|
| 949 |
+
{
|
| 950 |
+
"model": "CultriX/SeQwence-14B",
|
| 951 |
+
"parameters": {
|
| 952 |
+
"weight": 0.15,
|
| 953 |
+
"density": 0.4
|
| 954 |
+
}
|
| 955 |
+
},
|
| 956 |
+
{
|
| 957 |
+
"model": "v000000/Qwen2.5-Lumen-14B",
|
| 958 |
+
"parameters": {
|
| 959 |
+
"weight": 0.10,
|
| 960 |
+
"density": 0.5
|
| 961 |
+
}
|
| 962 |
+
}
|
| 963 |
+
],
|
| 964 |
+
"base_model": "Qwen/Qwen2.5-14B",
|
| 965 |
+
"merge_method": "dare_ties",
|
| 966 |
+
"parameters": {
|
| 967 |
+
"normalize": True,
|
| 968 |
+
"int8_mask": True
|
| 969 |
+
},
|
| 970 |
+
"dtype": "bfloat16",
|
| 971 |
+
"tokenizer_source": "Qwen/Qwen2.5-14B-Instruct"
|
| 972 |
+
}
|
| 973 |
+
},
|
| 974 |
+
{
|
| 975 |
+
"rank": 85,
|
| 976 |
+
"name": "sometimesanotion/Qwentinuum-14B-v013",
|
| 977 |
+
"scores": {
|
| 978 |
+
"average": 37.96,
|
| 979 |
+
"IFEval": 67.11,
|
| 980 |
+
"BBH": 43.97,
|
| 981 |
+
"MATH": 33.01,
|
| 982 |
+
"GPQA": 14.32,
|
| 983 |
+
"MUSR": 24.99,
|
| 984 |
+
"MMLU-PRO": 44.34
|
| 985 |
+
},
|
| 986 |
+
"known_config": {
|
| 987 |
+
"name": "Qwentinuum-14B-v013",
|
| 988 |
+
"merge_method": "model_stock",
|
| 989 |
+
"base_model": "Qwen/Qwen2.5-14B",
|
| 990 |
+
"tokenizer_source": "base",
|
| 991 |
+
"parameters": {
|
| 992 |
+
"int8_mask": True,
|
| 993 |
+
"normalize": True,
|
| 994 |
+
"rescale": False
|
| 995 |
+
},
|
| 996 |
+
"models": [
|
| 997 |
+
"sometimesanotion/Qwenvergence-14B-v3-Prose+sometimesanotion/Qwenvergence-Abliterate-512",
|
| 998 |
+
"sometimesanotion/Qwentinuum-14B-v011+sometimesanotion/Qwenvergence-Abliterate-512",
|
| 999 |
+
"sometimesanotion/Qwentinuum-14B-v012+sometimesanotion/Qwenvergence-Abliterate-256",
|
| 1000 |
+
"sometimesanotion/Qwenvergence-14B-v6-Prose+sometimesanotion/Qwenvergence-Abliterate-512",
|
| 1001 |
+
"sometimesanotion/Lamarck-14B-v0.3+sometimesanotion/Qwenvergence-Abliterate-512",
|
| 1002 |
+
"huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2"
|
| 1003 |
+
],
|
| 1004 |
+
"dtype": "bfloat16",
|
| 1005 |
+
"out_dtype": "bfloat16"
|
| 1006 |
+
}
|
| 1007 |
+
},
|
| 1008 |
+
{
|
| 1009 |
+
"rank": 86,
|
| 1010 |
+
"name": "CultriX/Qwen2.5-14B-Wernickev3",
|
| 1011 |
+
"scores": {
|
| 1012 |
+
"average": 37.94,
|
| 1013 |
+
"IFEval": 70.48,
|
| 1014 |
+
"BBH": 44.58,
|
| 1015 |
+
"MATH": 32.78,
|
| 1016 |
+
"GPQA": 14.99,
|
| 1017 |
+
"MUSR": 18.69,
|
| 1018 |
+
"MMLU-PRO": 46.13
|
| 1019 |
+
},
|
| 1020 |
+
"known_config": {
|
| 1021 |
+
"CONFIG SuperiorMerge-14B-From-2-to-10": {
|
| 1022 |
+
"models": [
|
| 1023 |
+
{
|
| 1024 |
+
"model": "VAGOsolutions/SauerkrautLM-v2-14b-DPO",
|
| 1025 |
+
"parameters": {
|
| 1026 |
+
"weight": 0.25,
|
| 1027 |
+
"density": 0.6
|
| 1028 |
+
}
|
| 1029 |
+
},
|
| 1030 |
+
{
|
| 1031 |
+
"model": "allknowingroger/QwenSlerp6-14B",
|
| 1032 |
+
"parameters": {
|
| 1033 |
+
"weight": 0.25,
|
| 1034 |
+
"density": 0.6
|
| 1035 |
+
}
|
| 1036 |
+
},
|
| 1037 |
+
{
|
| 1038 |
+
"model": "CultriX/SeQwence-14B-EvolMerge",
|
| 1039 |
+
"parameters": {
|
| 1040 |
+
"weight": 0.20,
|
| 1041 |
+
"density": 0.5
|
| 1042 |
+
}
|
| 1043 |
+
},
|
| 1044 |
+
{
|
| 1045 |
+
"model": "CultriX/Qwen2.5-14B-Wernicke",
|
| 1046 |
+
"parameters": {
|
| 1047 |
+
"weight": 0.15,
|
| 1048 |
+
"density": 0.5
|
| 1049 |
+
}
|
| 1050 |
+
},
|
| 1051 |
+
{
|
| 1052 |
+
"model": "allknowingroger/QwenStock3-14B",
|
| 1053 |
+
"parameters": {
|
| 1054 |
+
"weight": 0.15,
|
| 1055 |
+
"density": 0.5
|
| 1056 |
+
}
|
| 1057 |
+
}
|
| 1058 |
+
],
|
| 1059 |
+
"base_model": "Qwen/Qwen2.5-14B",
|
| 1060 |
+
"merge_method": "dare_ties",
|
| 1061 |
+
"parameters": {
|
| 1062 |
+
"normalize": True,
|
| 1063 |
+
"int8_mask": True
|
| 1064 |
+
},
|
| 1065 |
+
"dtype": "bfloat16",
|
| 1066 |
+
"tokenizer_source": "Qwen/Qwen2.5-14B-Instruct"
|
| 1067 |
+
}
|
| 1068 |
+
}
|
| 1069 |
+
},
|
| 1070 |
+
{
|
| 1071 |
+
"rank": 88,
|
| 1072 |
+
"name": "allknowingroger/QwenSlerp4-14B",
|
| 1073 |
+
"scores": {
|
| 1074 |
+
"average": 37.80,
|
| 1075 |
+
"IFEval": 63.28,
|
| 1076 |
+
"BBH": 49.38,
|
| 1077 |
+
"MATH": 30.97,
|
| 1078 |
+
"GPQA": 16.33,
|
| 1079 |
+
"MUSR": 17.59,
|
| 1080 |
+
"MMLU-PRO": 49.28
|
| 1081 |
+
},
|
| 1082 |
+
"known_config": {
|
| 1083 |
+
"models": [
|
| 1084 |
+
{
|
| 1085 |
+
"model": "CultriX/Qwen2.5-14B-Wernicke",
|
| 1086 |
+
"parameters": {
|
| 1087 |
+
"weight": 0.55,
|
| 1088 |
+
"density": 0.80
|
| 1089 |
+
}
|
| 1090 |
+
},
|
| 1091 |
+
{
|
| 1092 |
+
"model": "VAGOsolutions/SauerkrautLM-v2-14b-DPO",
|
| 1093 |
+
"parameters": {
|
| 1094 |
+
"weight": 0.20,
|
| 1095 |
+
"density": 0.60
|
| 1096 |
+
}
|
| 1097 |
+
},
|
| 1098 |
+
{
|
| 1099 |
+
"model": "rombodawg/Rombos-LLM-V2.6-Qwen-14b",
|
| 1100 |
+
"parameters": {
|
| 1101 |
+
"weight": 0.25,
|
| 1102 |
+
"density": 0.70
|
| 1103 |
+
}
|
| 1104 |
+
},
|
| 1105 |
+
{
|
| 1106 |
+
"model": "allknowingroger/Qwenslerp2-14B",
|
| 1107 |
+
"parameters": {
|
| 1108 |
+
"weight": 0.15,
|
| 1109 |
+
"density": 0.65
|
| 1110 |
+
}
|
| 1111 |
+
}
|
| 1112 |
+
],
|
| 1113 |
+
"base_model": "Qwen/Qwen2.5-14B",
|
| 1114 |
+
"merge_method": "dare_ties",
|
| 1115 |
+
"parameters": {
|
| 1116 |
+
"normalize": True,
|
| 1117 |
+
"int8_mask": True
|
| 1118 |
+
},
|
| 1119 |
+
"dtype": "bfloat16",
|
| 1120 |
+
"tokenizer_source": "Qwen/Qwen2.5-14B-Instruct",
|
| 1121 |
+
"adaptive_merge_parameters": {
|
| 1122 |
+
"task_weights": {
|
| 1123 |
+
"IFEval": 1.0,
|
| 1124 |
+
"MATH": 1.3,
|
| 1125 |
+
"GPQA": 1.1,
|
| 1126 |
+
"MUSR": 1.2,
|
| 1127 |
+
"MMLU-PRO": 1.0
|
| 1128 |
+
},
|
| 1129 |
+
"smoothing_factor": 0.15
|
| 1130 |
+
},
|
| 1131 |
+
"gradient_clipping": 1.0
|
| 1132 |
+
}
|
| 1133 |
+
},
|
| 1134 |
+
{
|
| 1135 |
+
"rank": 89,
|
| 1136 |
+
"name": "CultriX/Qwen2.5-14B-Broca",
|
| 1137 |
+
"scores": {
|
| 1138 |
+
"average": 37.72,
|
| 1139 |
+
"IFEval": 56.04,
|
| 1140 |
+
"BBH": 50.03,
|
| 1141 |
+
"MATH": 34.59,
|
| 1142 |
+
"GPQA": 18.23,
|
| 1143 |
+
"MUSR": 18.95,
|
| 1144 |
+
"MMLU-PRO": 48.49
|
| 1145 |
+
},
|
| 1146 |
+
"known_config": {
|
| 1147 |
+
"merge_method": "della_linear",
|
| 1148 |
+
"base_model": "CultriX/Qwen2.5-14B-Wernickev3",
|
| 1149 |
+
"dtype": "bfloat16",
|
| 1150 |
+
"parameters": {
|
| 1151 |
+
"epsilon": 0.03,
|
| 1152 |
+
"lambda": 1.1,
|
| 1153 |
+
"normalize": True
|
| 1154 |
+
},
|
| 1155 |
+
"adaptive_merge_parameters": {
|
| 1156 |
+
"task_weights": {
|
| 1157 |
+
"tinyArc": 1.3,
|
| 1158 |
+
"tinyHellaswag": 1.2,
|
| 1159 |
+
"tinyMMLU": 1.1,
|
| 1160 |
+
"tinyTruthfulQA": 1.4,
|
| 1161 |
+
"tinyWinogrande": 1.2,
|
| 1162 |
+
"IFEval": 1.3,
|
| 1163 |
+
"BBH": 1.3,
|
| 1164 |
+
"MATH": 1.4,
|
| 1165 |
+
"GPQA": 1.3,
|
| 1166 |
+
"MUSR": 1.2,
|
| 1167 |
+
"MMLU-PRO": 1.2
|
| 1168 |
+
},
|
| 1169 |
+
"smoothing_factor": 0.15
|
| 1170 |
+
},
|
| 1171 |
+
"gradient_clipping": 1.0,
|
| 1172 |
+
"models": [
|
| 1173 |
+
{
|
| 1174 |
+
"model": "CultriX/Qwen2.5-14B-Wernickev3",
|
| 1175 |
+
"parameters": {
|
| 1176 |
+
"weight": 0.5,
|
| 1177 |
+
"density": 0.7
|
| 1178 |
+
}
|
| 1179 |
+
},
|
| 1180 |
+
{
|
| 1181 |
+
"model": "djuna/Q2.5-Veltha-14B-0.5",
|
| 1182 |
+
"parameters": {
|
| 1183 |
+
"weight": 0.3,
|
| 1184 |
+
"density": 0.8
|
| 1185 |
+
}
|
| 1186 |
+
},
|
| 1187 |
+
{
|
| 1188 |
+
"model": "CultriX/SeQwence-14B-EvolMerge",
|
| 1189 |
+
"parameters": {
|
| 1190 |
+
"weight": 0.2,
|
| 1191 |
+
"density": 0.6
|
| 1192 |
+
}
|
| 1193 |
+
}
|
| 1194 |
+
],
|
| 1195 |
+
"tokenizer_source": "CultriX/Qwen2.5-14B-Wernickev3"
|
| 1196 |
+
}
|
| 1197 |
+
},
|
| 1198 |
+
{
|
| 1199 |
+
"rank": 90,
|
| 1200 |
+
"name": "CultriX/Qwen2.5-14B-Emerged",
|
| 1201 |
+
"scores": {
|
| 1202 |
+
"average": 37.66,
|
| 1203 |
+
"IFEval": 70.00,
|
| 1204 |
+
"BBH": 45.93,
|
| 1205 |
+
"MATH": 30.74,
|
| 1206 |
+
"GPQA": 14.32,
|
| 1207 |
+
"MUSR": 18.47,
|
| 1208 |
+
"MMLU-PRO": 46.51
|
| 1209 |
+
},
|
| 1210 |
+
"known_config": {
|
| 1211 |
+
"models": [
|
| 1212 |
+
{"model": "CultriX/Qwen2.5-14B-Wernickev3"},
|
| 1213 |
+
{"model": "CultriX/Qwen2.5-14B-Wernickev5"}
|
| 1214 |
+
],
|
| 1215 |
+
"merge_method": "slerp",
|
| 1216 |
+
"base_model": "CultriX/Qwen2.5-14B-Wernickev3",
|
| 1217 |
+
"dtype": "bfloat16",
|
| 1218 |
+
"parameters": {
|
| 1219 |
+
"t": [0, 0.5, 1, 0.5, 0]
|
| 1220 |
+
},
|
| 1221 |
+
"dtype_duplicate": "bfloat16", # The snippet repeated 'dtype' line
|
| 1222 |
+
"adaptive_merge_parameters": {
|
| 1223 |
+
"task_weights": {
|
| 1224 |
+
"tinyArc": 1.2,
|
| 1225 |
+
"tinyHellaswag": 1.1,
|
| 1226 |
+
"tinyMMLU": 1.2,
|
| 1227 |
+
"tinyTruthfulQA": 1.3,
|
| 1228 |
+
"tinyTruthfulQA_mc1": 1.1,
|
| 1229 |
+
"tinyWinogrande": 1.2
|
| 1230 |
+
},
|
| 1231 |
+
"smoothing_factor": 0.2
|
| 1232 |
+
},
|
| 1233 |
+
"gradient_clipping": 1.0
|
| 1234 |
+
}
|
| 1235 |
+
},
|
| 1236 |
+
{
|
| 1237 |
+
"rank": 91,
|
| 1238 |
+
"name": "sometimesanotion/Qwentinuum-14B-v8",
|
| 1239 |
+
"scores": {
|
| 1240 |
+
"average": 37.65,
|
| 1241 |
+
"IFEval": 54.12,
|
| 1242 |
+
"BBH": 50.11,
|
| 1243 |
+
"MATH": 34.14,
|
| 1244 |
+
"GPQA": 17.79,
|
| 1245 |
+
"MUSR": 20.75,
|
| 1246 |
+
"MMLU-PRO": 49.02
|
| 1247 |
+
},
|
| 1248 |
+
"known_config": None
|
| 1249 |
+
},
|
| 1250 |
+
{
|
| 1251 |
+
"rank": 92,
|
| 1252 |
+
"name": "qingy2024/Fusion-14B-Instruct",
|
| 1253 |
+
"scores": {
|
| 1254 |
+
"average": 37.64,
|
| 1255 |
+
"IFEval": 72.60,
|
| 1256 |
+
"BBH": 48.58,
|
| 1257 |
+
"MATH": 30.97,
|
| 1258 |
+
"GPQA": 13.98,
|
| 1259 |
+
"MUSR": 14.81,
|
| 1260 |
+
"MMLU-PRO": 44.93
|
| 1261 |
+
},
|
| 1262 |
+
"known_config": {
|
| 1263 |
+
"models": [
|
| 1264 |
+
{
|
| 1265 |
+
"model": "qingy2024/Qwen2.5-Math-14B-Instruct-Preview",
|
| 1266 |
+
"parameters": {
|
| 1267 |
+
"weight": 0.3,
|
| 1268 |
+
"density": 0.6
|
| 1269 |
+
}
|
| 1270 |
+
},
|
| 1271 |
+
{
|
| 1272 |
+
"model": "arcee-ai/Virtuoso-Small",
|
| 1273 |
+
"parameters": {
|
| 1274 |
+
"weight": 0.7,
|
| 1275 |
+
"density": 0.6
|
| 1276 |
+
}
|
| 1277 |
+
}
|
| 1278 |
+
],
|
| 1279 |
+
"base_model": "Qwen/Qwen2.5-14B",
|
| 1280 |
+
"merge_method": "dare_ties",
|
| 1281 |
+
"parameters": {
|
| 1282 |
+
"normalize": True,
|
| 1283 |
+
"int8_mask": True
|
| 1284 |
+
},
|
| 1285 |
+
"dtype": "bfloat16",
|
| 1286 |
+
"tokenizer_source": "Qwen/Qwen2.5-14B-Instruct"
|
| 1287 |
+
}
|
| 1288 |
+
},
|
| 1289 |
+
{
|
| 1290 |
+
"rank": 94,
|
| 1291 |
+
"name": "CultriX/Qwestion-14B",
|
| 1292 |
+
"scores": {
|
| 1293 |
+
"average": 37.63,
|
| 1294 |
+
"IFEval": 63.18,
|
| 1295 |
+
"BBH": 48.76,
|
| 1296 |
+
"MATH": 31.72,
|
| 1297 |
+
"GPQA": 15.77,
|
| 1298 |
+
"MUSR": 17.22,
|
| 1299 |
+
"MMLU-PRO": 49.14
|
| 1300 |
+
},
|
| 1301 |
+
"known_config": {
|
| 1302 |
+
"models": [
|
| 1303 |
+
{
|
| 1304 |
+
"model": "CultriX/Qwen2.5-14B-Wernicke",
|
| 1305 |
+
"parameters": {
|
| 1306 |
+
"weight": 0.55,
|
| 1307 |
+
"density": 0.80
|
| 1308 |
+
}
|
| 1309 |
+
},
|
| 1310 |
+
{
|
| 1311 |
+
"model": "VAGOsolutions/SauerkrautLM-v2-14b-DPO",
|
| 1312 |
+
"parameters": {
|
| 1313 |
+
"weight": 0.20,
|
| 1314 |
+
"density": 0.60
|
| 1315 |
+
}
|
| 1316 |
+
},
|
| 1317 |
+
{
|
| 1318 |
+
"model": "rombodawg/Rombos-LLM-V2.6-Qwen-14b",
|
| 1319 |
+
"parameters": {
|
| 1320 |
+
"weight": 0.25,
|
| 1321 |
+
"density": 0.70
|
| 1322 |
+
}
|
| 1323 |
+
},
|
| 1324 |
+
{
|
| 1325 |
+
"model": "allknowingroger/Qwenslerp2-14B",
|
| 1326 |
+
"parameters": {
|
| 1327 |
+
"weight": 0.15,
|
| 1328 |
+
"density": 0.65
|
| 1329 |
+
}
|
| 1330 |
+
}
|
| 1331 |
+
],
|
| 1332 |
+
"base_model": "Qwen/Qwen2.5-14B",
|
| 1333 |
+
"merge_method": "dare_ties",
|
| 1334 |
+
"parameters": {
|
| 1335 |
+
"normalize": True,
|
| 1336 |
+
"int8_mask": True
|
| 1337 |
+
},
|
| 1338 |
+
"dtype": "bfloat16",
|
| 1339 |
+
"tokenizer_source": "Qwen/Qwen2.5-14B-Instruct",
|
| 1340 |
+
"adaptive_merge_parameters": {
|
| 1341 |
+
"task_weights": {
|
| 1342 |
+
"IFEval": 1.0,
|
| 1343 |
+
"MATH": 1.3,
|
| 1344 |
+
"GPQA": 1.1,
|
| 1345 |
+
"MUSR": 1.2,
|
| 1346 |
+
"MMLU-PRO": 1.0
|
| 1347 |
+
},
|
| 1348 |
+
"smoothing_factor": 0.15
|
| 1349 |
+
},
|
| 1350 |
+
"gradient_clipping": 1.0
|
| 1351 |
+
}
|
| 1352 |
+
},
|
| 1353 |
+
{
|
| 1354 |
+
"rank": 99,
|
| 1355 |
+
"name": "sometimesanotion/Qwenvergence-14B-v3-Prose",
|
| 1356 |
+
"scores": {
|
| 1357 |
+
"average": 37.37,
|
| 1358 |
+
"IFEval": 49.18,
|
| 1359 |
+
"BBH": 49.80,
|
| 1360 |
+
"MATH": 35.57,
|
| 1361 |
+
"GPQA": 19.35,
|
| 1362 |
+
"MUSR": 21.77,
|
| 1363 |
+
"MMLU-PRO": 48.55
|
| 1364 |
+
},
|
| 1365 |
+
"known_config": None
|
| 1366 |
+
},
|
| 1367 |
+
{
|
| 1368 |
+
"rank": 102,
|
| 1369 |
+
"name": "CultriX/SeQwence-14B-v5",
|
| 1370 |
+
"scores": {
|
| 1371 |
+
"average": 37.27,
|
| 1372 |
+
"IFEval": 59.20,
|
| 1373 |
+
"BBH": 50.00,
|
| 1374 |
+
"MATH": 31.04,
|
| 1375 |
+
"GPQA": 16.00,
|
| 1376 |
+
"MUSR": 18.33,
|
| 1377 |
+
"MMLU-PRO": 49.05
|
| 1378 |
+
},
|
| 1379 |
+
"known_config": None
|
| 1380 |
+
},
|
| 1381 |
+
{
|
| 1382 |
+
"rank": 103,
|
| 1383 |
+
"name": "sometimesanotion/Qwen-14B-ProseStock-v4",
|
| 1384 |
+
"scores": {
|
| 1385 |
+
"average": 37.23,
|
| 1386 |
+
"IFEval": 49.42,
|
| 1387 |
+
"BBH": 49.54,
|
| 1388 |
+
"MATH": 35.50,
|
| 1389 |
+
"GPQA": 18.46,
|
| 1390 |
+
"MUSR": 21.70,
|
| 1391 |
+
"MMLU-PRO": 48.74
|
| 1392 |
+
},
|
| 1393 |
+
"known_config": None
|
| 1394 |
+
},
|
| 1395 |
+
{
|
| 1396 |
+
"rank": 104,
|
| 1397 |
+
"name": "sometimesanotion/IF-reasoning-experiment-40",
|
| 1398 |
+
"scores": {
|
| 1399 |
+
"average": 37.21,
|
| 1400 |
+
"IFEval": 63.30,
|
| 1401 |
+
"BBH": 44.31,
|
| 1402 |
+
"MATH": 27.72,
|
| 1403 |
+
"GPQA": 17.34,
|
| 1404 |
+
"MUSR": 25.86,
|
| 1405 |
+
"MMLU-PRO": 44.72
|
| 1406 |
+
},
|
| 1407 |
+
"known_config": {
|
| 1408 |
+
"name": "sometimesanotion/IF-reasoning-experiment-40",
|
| 1409 |
+
"merge_method": "slerp",
|
| 1410 |
+
"base_model": "sometimesanotion/Qwenvergence-Abliterate",
|
| 1411 |
+
"tokenizer_source": "base",
|
| 1412 |
+
"dtype": "float32",
|
| 1413 |
+
"out_dtype": "bfloat16",
|
| 1414 |
+
"parameters": {
|
| 1415 |
+
"t": [
|
| 1416 |
+
{"value": 0.40}
|
| 1417 |
+
]
|
| 1418 |
+
},
|
| 1419 |
+
"slices": [
|
| 1420 |
+
{
|
| 1421 |
+
"sources": [
|
| 1422 |
+
{
|
| 1423 |
+
"model": "sometimesanotion/Qwenvergence-Abliterate",
|
| 1424 |
+
"layer_range": [0, 48]
|
| 1425 |
+
},
|
| 1426 |
+
{
|
| 1427 |
+
"model": "sometimesanotion/Qwen2.5-14B-Vimarckoso-v3+sometimesanotion/Qwenvergence-Abliterate-64",
|
| 1428 |
+
"layer_range": [0, 48]
|
| 1429 |
+
}
|
| 1430 |
+
]
|
| 1431 |
+
}
|
| 1432 |
+
]
|
| 1433 |
+
}
|
| 1434 |
+
},
|
| 1435 |
+
{
|
| 1436 |
+
"rank": 105,
|
| 1437 |
+
"name": "CultriX/SeQwence-14B-EvolMerge",
|
| 1438 |
+
"scores": {
|
| 1439 |
+
"average": 37.20,
|
| 1440 |
+
"IFEval": 53.82,
|
| 1441 |
+
"BBH": 50.78,
|
| 1442 |
+
"MATH": 31.80,
|
| 1443 |
+
"GPQA": 17.45,
|
| 1444 |
+
"MUSR": 20.26,
|
| 1445 |
+
"MMLU-PRO": 49.10
|
| 1446 |
+
},
|
| 1447 |
+
"known_config": {
|
| 1448 |
+
"base_model": "CultriX/SeQwence-14Bv1",
|
| 1449 |
+
"dtype": "bfloat16",
|
| 1450 |
+
"merge_method": "dare_ties",
|
| 1451 |
+
"parameters": {
|
| 1452 |
+
"int8_mask": 1.0,
|
| 1453 |
+
"normalize": 1.0
|
| 1454 |
+
},
|
| 1455 |
+
"slices": [
|
| 1456 |
+
{
|
| 1457 |
+
"sources": [
|
| 1458 |
+
{
|
| 1459 |
+
"layer_range": [0, 48],
|
| 1460 |
+
"model": "CultriX/SeQwence-14Bv1",
|
| 1461 |
+
"parameters": {
|
| 1462 |
+
"density": [
|
| 1463 |
+
0.9723868064882017,
|
| 1464 |
+
1.0,
|
| 1465 |
+
1.0,
|
| 1466 |
+
1.0,
|
| 1467 |
+
1.0,
|
| 1468 |
+
0.9714039829478123
|
| 1469 |
+
],
|
| 1470 |
+
"weight": [
|
| 1471 |
+
0.303941801676895,
|
| 1472 |
+
0.364404551023674,
|
| 1473 |
+
0.315900913803921,
|
| 1474 |
+
0.3276032249804535,
|
| 1475 |
+
0.32167313684876814,
|
| 1476 |
+
0.4385348686221433
|
| 1477 |
+
]
|
| 1478 |
+
}
|
| 1479 |
+
},
|
| 1480 |
+
{
|
| 1481 |
+
"layer_range": [0, 48],
|
| 1482 |
+
"model": "CultriX/Qwestion-14B",
|
| 1483 |
+
"parameters": {
|
| 1484 |
+
"density": [
|
| 1485 |
+
1.0,
|
| 1486 |
+
0.9914516102369406,
|
| 1487 |
+
1.0,
|
| 1488 |
+
0.8035966798672015,
|
| 1489 |
+
0.8192028457518323,
|
| 1490 |
+
0.9514479609471497
|
| 1491 |
+
],
|
| 1492 |
+
"weight": [
|
| 1493 |
+
0.23754044230348376,
|
| 1494 |
+
0.26302919982461254,
|
| 1495 |
+
0.26313082788173275,
|
| 1496 |
+
0.17815237275761467,
|
| 1497 |
+
0.34301750695974753,
|
| 1498 |
+
0.5374787613924082
|
| 1499 |
+
]
|
| 1500 |
+
}
|
| 1501 |
+
},
|
| 1502 |
+
{
|
| 1503 |
+
"layer_range": [0, 48],
|
| 1504 |
+
"model": "CultriX/Qwen2.5-14B-Wernicke",
|
| 1505 |
+
"parameters": {
|
| 1506 |
+
"density": [
|
| 1507 |
+
0.9250003667144193,
|
| 1508 |
+
0.9603820599250329,
|
| 1509 |
+
0.8766642760655986,
|
| 1510 |
+
1.0,
|
| 1511 |
+
0.9993615706551808,
|
| 1512 |
+
0.7459506348277176
|
| 1513 |
+
],
|
| 1514 |
+
"weight": [
|
| 1515 |
+
0.48038202535582214,
|
| 1516 |
+
0.5870170049221364,
|
| 1517 |
+
0.27054455623315504,
|
| 1518 |
+
0.06016442415521043,
|
| 1519 |
+
0.4012739361231067,
|
| 1520 |
+
0.26890177448533076
|
| 1521 |
+
]
|
| 1522 |
+
}
|
| 1523 |
+
}
|
| 1524 |
+
]
|
| 1525 |
+
}
|
| 1526 |
+
]
|
| 1527 |
+
}
|
| 1528 |
+
}
|
| 1529 |
+
]
|
| 1530 |
|
|
|
|
|
|
|
| 1531 |
|
| 1532 |
+
# ---------------------------------------------------------
|
| 1533 |
+
# PART 2: PARSING LOGIC -- PRINTS OR SCRAPES
|
| 1534 |
+
# ---------------------------------------------------------
|
| 1535 |
|
| 1536 |
+
def print_benchmark_and_config_info(model_info):
|
| 1537 |
+
"""
|
| 1538 |
+
Prints an overview (to stdout) of the benchmark scores for one model,
|
| 1539 |
+
then prints its known MergeKit config if present, otherwise prints a "No config found" note.
|
| 1540 |
+
"""
|
| 1541 |
+
print("---")
|
| 1542 |
+
print(f"Model Rank: {model_info['rank']}")
|
| 1543 |
+
print(f"Model Name: {model_info['name']}")
|
| 1544 |
+
print(f"Model average score across benchmarks in %: {model_info['scores']['average']}")
|
| 1545 |
+
print(f"Models average score on IFEval benchmarks in %: {model_info['scores']['IFEval']}")
|
| 1546 |
+
print(f"Models average score on BBH benchmarks in %: {model_info['scores']['BBH']}")
|
| 1547 |
+
print(f"Models average score on MATH benchmarks in %: {model_info['scores']['MATH']}")
|
| 1548 |
+
print(f"Models average score in GPQA benchmarks in %: {model_info['scores']['GPQA']}")
|
| 1549 |
+
print(f"Models average score in MUSR benchmarks in %: {model_info['scores']['MUSR']}")
|
| 1550 |
+
print(f"Models average score in MMLU-PRO benchmarks in %: {model_info['scores']['MMLU-PRO']}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1551 |
|
| 1552 |
+
if model_info["known_config"] is not None:
|
| 1553 |
+
print("###")
|
| 1554 |
+
# For demonstration, let's just print the dictionary in a 'rough' YAML style
|
| 1555 |
+
# If you want perfect YAML, consider using pyyaml to dump it.
|
| 1556 |
+
_print_dict_as_yaml(model_info["known_config"], indent_level=0)
|
| 1557 |
+
print("###")
|
| 1558 |
+
else:
|
| 1559 |
+
print("(No MergeKit configuration found.)")
|
| 1560 |
+
print("")
|
| 1561 |
+
print("You can try the following Python script to scrape the model page:")
|
| 1562 |
+
print("######################################################################")
|
| 1563 |
+
print(
|
| 1564 |
+
f'''import requests
|
| 1565 |
from bs4 import BeautifulSoup
|
| 1566 |
|
| 1567 |
def scrape_model_page(model_url):
|
| 1568 |
try:
|
| 1569 |
response = requests.get(model_url)
|
| 1570 |
if response.status_code != 200:
|
| 1571 |
+
return f"Error: Unable to fetch the page (Status Code: {{response.status_code}})"
|
| 1572 |
|
| 1573 |
soup = BeautifulSoup(response.text, "html.parser")
|
| 1574 |
|
|
|
|
| 1578 |
metadata_section = soup.find("div", class_="metadata")
|
| 1579 |
metadata_text = metadata_section.text.strip() if metadata_section else "No metadata found."
|
| 1580 |
|
| 1581 |
+
return {{
|
| 1582 |
"yaml_configuration": yaml_text,
|
| 1583 |
"metadata": metadata_text
|
| 1584 |
+
}}
|
| 1585 |
|
| 1586 |
except Exception as e:
|
| 1587 |
+
return f"Error: {{str(e)}}"
|
| 1588 |
|
| 1589 |
if __name__ == "__main__":
|
| 1590 |
+
model_url = "https://huggingface.co/{model_info['name']}"
|
| 1591 |
result = scrape_model_page(model_url)
|
| 1592 |
+
print(result)'''
|
| 1593 |
+
)
|
| 1594 |
+
print("######################################################################")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1595 |
|
| 1596 |
|
| 1597 |
+
def _print_dict_as_yaml(data, indent_level=0):
|
| 1598 |
"""
|
| 1599 |
+
Recursively prints dict 'data' as pseudo-YAML to stdout.
|
| 1600 |
+
(We do it manually because the user data can be nested.)
|
| 1601 |
"""
|
| 1602 |
+
indent = " " * indent_level
|
| 1603 |
+
if isinstance(data, dict):
|
| 1604 |
+
for k, v in data.items():
|
| 1605 |
+
if isinstance(v, dict):
|
| 1606 |
+
print(f"{indent}{k}:")
|
| 1607 |
+
_print_dict_as_yaml(v, indent_level+1)
|
| 1608 |
+
elif isinstance(v, list):
|
| 1609 |
+
print(f"{indent}{k}:")
|
| 1610 |
+
for item in v:
|
| 1611 |
+
if isinstance(item, dict):
|
| 1612 |
+
print(f"{indent}-")
|
| 1613 |
+
_print_dict_as_yaml(item, indent_level+2)
|
| 1614 |
+
else:
|
| 1615 |
+
print(f"{indent}- {item}")
|
| 1616 |
+
else:
|
| 1617 |
+
print(f"{indent}{k}: {v}")
|
| 1618 |
+
else:
|
| 1619 |
+
print(f"{indent}{data}")
|
| 1620 |
|
| 1621 |
|
| 1622 |
+
def run_parsing_script():
|
| 1623 |
+
"""
|
| 1624 |
+
Loops over all models in benchmark_data, calling print_benchmark_and_config_info()
|
| 1625 |
+
to generate the entire "great results" text.
|
| 1626 |
+
We capture the stdout prints, then return them as a single string.
|
| 1627 |
+
"""
|
| 1628 |
+
old_stdout = sys.stdout
|
| 1629 |
+
captured_output = io.StringIO()
|
| 1630 |
+
sys.stdout = captured_output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1631 |
|
| 1632 |
+
for model in benchmark_data:
|
| 1633 |
+
print_benchmark_and_config_info(model)
|
|
|
|
|
|
|
|
|
|
| 1634 |
|
| 1635 |
+
sys.stdout = old_stdout
|
| 1636 |
+
return captured_output.getvalue()
|
|
|
|
|
|
|
| 1637 |
|
|
|
|
|
|
|
| 1638 |
|
| 1639 |
+
# ---------------------------------------------------------
|
| 1640 |
+
# PART 3: GRADIO APP
|
| 1641 |
+
# ---------------------------------------------------------
|
| 1642 |
|
| 1643 |
+
def parse_and_show_results():
|
| 1644 |
+
"""
|
| 1645 |
+
Gradio-compatible function that runs the parser
|
| 1646 |
+
and returns the captured output text.
|
| 1647 |
+
"""
|
| 1648 |
+
return run_parsing_script()
|
| 1649 |
|
| 1650 |
with gr.Blocks() as demo:
|
| 1651 |
+
gr.Markdown("# Full-Dataset Dynamic Benchmark Parsing")
|
| 1652 |
+
gr.Markdown("Click the button below to parse all models (Rank 44 to 105) from the dataset:")
|
| 1653 |
+
parse_btn = gr.Button("Parse Benchmarks")
|
| 1654 |
+
results_box = gr.Textbox(label="Parsed Benchmark Results", lines=25)
|
| 1655 |
+
parse_btn.click(fn=parse_and_show_results, outputs=results_box)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1656 |
|
| 1657 |
demo.launch()
|