Commit
·
c1b3b74
1
Parent(s):
753af07
feat: move generation outside of pipeline
Browse files
src/distilabel_dataset_generator/apps/sft.py
CHANGED
|
@@ -1,23 +1,24 @@
|
|
| 1 |
import io
|
| 2 |
-
import multiprocessing
|
| 3 |
-
import time
|
| 4 |
from typing import Union
|
| 5 |
|
| 6 |
import gradio as gr
|
| 7 |
import pandas as pd
|
| 8 |
from datasets import Dataset
|
| 9 |
from distilabel.distiset import Distiset
|
|
|
|
| 10 |
from gradio.oauth import OAuthToken
|
| 11 |
from huggingface_hub import upload_file
|
| 12 |
|
| 13 |
from src.distilabel_dataset_generator.pipelines.sft import (
|
|
|
|
| 14 |
DEFAULT_DATASET_DESCRIPTIONS,
|
| 15 |
DEFAULT_DATASETS,
|
| 16 |
DEFAULT_SYSTEM_PROMPTS,
|
| 17 |
PROMPT_CREATION_PROMPT,
|
| 18 |
generate_pipeline_code,
|
| 19 |
-
|
| 20 |
-
|
|
|
|
| 21 |
)
|
| 22 |
from src.distilabel_dataset_generator.utils import (
|
| 23 |
get_login_button,
|
|
@@ -26,22 +27,15 @@ from src.distilabel_dataset_generator.utils import (
|
|
| 26 |
)
|
| 27 |
|
| 28 |
|
| 29 |
-
def _run_pipeline(result_queue, num_turns, num_rows, system_prompt, is_sample):
|
| 30 |
-
pipeline = get_pipeline(num_turns, num_rows, system_prompt, is_sample)
|
| 31 |
-
distiset: Distiset = pipeline.run(use_cache=False)
|
| 32 |
-
result_queue.put(distiset)
|
| 33 |
-
|
| 34 |
-
|
| 35 |
def generate_system_prompt(dataset_description, progress=gr.Progress()):
|
|
|
|
| 36 |
if dataset_description in DEFAULT_DATASET_DESCRIPTIONS:
|
| 37 |
index = DEFAULT_DATASET_DESCRIPTIONS.index(dataset_description)
|
| 38 |
if index < len(DEFAULT_SYSTEM_PROMPTS):
|
| 39 |
return DEFAULT_SYSTEM_PROMPTS[index]
|
| 40 |
|
| 41 |
-
progress(0.
|
| 42 |
-
generate_description =
|
| 43 |
-
progress(0.4, desc="Loading model")
|
| 44 |
-
generate_description.load()
|
| 45 |
progress(0.7, desc="Generating system prompt")
|
| 46 |
result = next(
|
| 47 |
generate_description.process(
|
|
@@ -62,12 +56,9 @@ def generate_sample_dataset(system_prompt, progress=gr.Progress()):
|
|
| 62 |
index = DEFAULT_SYSTEM_PROMPTS.index(system_prompt)
|
| 63 |
if index < len(DEFAULT_DATASETS):
|
| 64 |
return DEFAULT_DATASETS[index]
|
| 65 |
-
|
| 66 |
-
progress(0.1, desc="Initializing sample dataset generation")
|
| 67 |
result = generate_dataset(
|
| 68 |
system_prompt, num_turns=1, num_rows=1, progress=progress, is_sample=True
|
| 69 |
)
|
| 70 |
-
progress(1.0, desc="Sample dataset generated")
|
| 71 |
return result
|
| 72 |
|
| 73 |
|
|
@@ -92,52 +83,98 @@ def generate_dataset(
|
|
| 92 |
is_sample: bool = False,
|
| 93 |
progress=gr.Progress(),
|
| 94 |
):
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
duration = 60
|
| 99 |
-
elif num_rows < 30:
|
| 100 |
-
duration = 120
|
| 101 |
-
elif num_rows < 100:
|
| 102 |
-
duration = 240
|
| 103 |
-
elif num_rows < 300:
|
| 104 |
-
duration = 600
|
| 105 |
-
elif num_rows < 1000:
|
| 106 |
-
duration = 1200
|
| 107 |
-
else:
|
| 108 |
-
duration = 2400
|
| 109 |
-
|
| 110 |
-
result_queue = multiprocessing.Queue()
|
| 111 |
-
p = multiprocessing.Process(
|
| 112 |
-
target=_run_pipeline,
|
| 113 |
-
args=(result_queue, num_turns, num_rows, system_prompt, is_sample),
|
| 114 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
for
|
| 120 |
-
if not p.is_alive() or p._popen.poll() is not None:
|
| 121 |
-
break
|
| 122 |
progress(
|
| 123 |
-
(
|
| 124 |
-
|
|
|
|
| 125 |
)
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
|
| 131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
|
| 133 |
# If not pushing to hub generate the dataset directly
|
| 134 |
-
distiset = distiset["default"]
|
| 135 |
if num_turns == 1:
|
| 136 |
-
outputs = distiset.to_pandas()[["prompt", "completion"]]
|
| 137 |
else:
|
| 138 |
outputs = distiset.to_pandas()[["messages"]]
|
| 139 |
dataframe = pd.DataFrame(outputs)
|
| 140 |
-
|
| 141 |
progress(1.0, desc="Dataset generation completed")
|
| 142 |
return dataframe
|
| 143 |
|
|
@@ -233,7 +270,7 @@ with gr.Blocks(
|
|
| 233 |
)
|
| 234 |
|
| 235 |
with gr.Row():
|
| 236 |
-
sample_dataset = gr.
|
| 237 |
value=DEFAULT_DATASETS[0],
|
| 238 |
label="Sample dataset. Prompts and completions truncated to 256 tokens.",
|
| 239 |
interactive=False,
|
|
@@ -311,7 +348,7 @@ with gr.Blocks(
|
|
| 311 |
value="Push to Hub", variant="primary", scale=2
|
| 312 |
)
|
| 313 |
with gr.Row():
|
| 314 |
-
final_dataset = gr.
|
| 315 |
value=DEFAULT_DATASETS[0],
|
| 316 |
label="Generated dataset",
|
| 317 |
interactive=False,
|
|
|
|
| 1 |
import io
|
|
|
|
|
|
|
| 2 |
from typing import Union
|
| 3 |
|
| 4 |
import gradio as gr
|
| 5 |
import pandas as pd
|
| 6 |
from datasets import Dataset
|
| 7 |
from distilabel.distiset import Distiset
|
| 8 |
+
from distilabel.steps.tasks.text_generation import TextGeneration
|
| 9 |
from gradio.oauth import OAuthToken
|
| 10 |
from huggingface_hub import upload_file
|
| 11 |
|
| 12 |
from src.distilabel_dataset_generator.pipelines.sft import (
|
| 13 |
+
DEFAULT_BATCH_SIZE,
|
| 14 |
DEFAULT_DATASET_DESCRIPTIONS,
|
| 15 |
DEFAULT_DATASETS,
|
| 16 |
DEFAULT_SYSTEM_PROMPTS,
|
| 17 |
PROMPT_CREATION_PROMPT,
|
| 18 |
generate_pipeline_code,
|
| 19 |
+
get_magpie_generator,
|
| 20 |
+
get_prompt_generator,
|
| 21 |
+
get_response_generator,
|
| 22 |
)
|
| 23 |
from src.distilabel_dataset_generator.utils import (
|
| 24 |
get_login_button,
|
|
|
|
| 27 |
)
|
| 28 |
|
| 29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
def generate_system_prompt(dataset_description, progress=gr.Progress()):
|
| 31 |
+
progress(0.0, desc="Generating system prompt")
|
| 32 |
if dataset_description in DEFAULT_DATASET_DESCRIPTIONS:
|
| 33 |
index = DEFAULT_DATASET_DESCRIPTIONS.index(dataset_description)
|
| 34 |
if index < len(DEFAULT_SYSTEM_PROMPTS):
|
| 35 |
return DEFAULT_SYSTEM_PROMPTS[index]
|
| 36 |
|
| 37 |
+
progress(0.3, desc="Initializing text generation")
|
| 38 |
+
generate_description: TextGeneration = get_prompt_generator()
|
|
|
|
|
|
|
| 39 |
progress(0.7, desc="Generating system prompt")
|
| 40 |
result = next(
|
| 41 |
generate_description.process(
|
|
|
|
| 56 |
index = DEFAULT_SYSTEM_PROMPTS.index(system_prompt)
|
| 57 |
if index < len(DEFAULT_DATASETS):
|
| 58 |
return DEFAULT_DATASETS[index]
|
|
|
|
|
|
|
| 59 |
result = generate_dataset(
|
| 60 |
system_prompt, num_turns=1, num_rows=1, progress=progress, is_sample=True
|
| 61 |
)
|
|
|
|
| 62 |
return result
|
| 63 |
|
| 64 |
|
|
|
|
| 83 |
is_sample: bool = False,
|
| 84 |
progress=gr.Progress(),
|
| 85 |
):
|
| 86 |
+
progress(0.0, desc="(1/2) Generating instructions")
|
| 87 |
+
magpie_generator = get_magpie_generator(
|
| 88 |
+
num_turns, num_rows, system_prompt, is_sample
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
)
|
| 90 |
+
response_generator = get_response_generator(num_turns, system_prompt, is_sample)
|
| 91 |
+
total_steps: int = num_rows * 2
|
| 92 |
+
batch_size = DEFAULT_BATCH_SIZE
|
| 93 |
+
|
| 94 |
+
# create instructions
|
| 95 |
+
magpie_results = []
|
| 96 |
+
for i in range(0, num_rows, batch_size):
|
| 97 |
+
progress(
|
| 98 |
+
0.5 * min(i + batch_size, num_rows) / num_rows,
|
| 99 |
+
total=total_steps,
|
| 100 |
+
desc="(1/2) Generating instructions",
|
| 101 |
+
)
|
| 102 |
+
batch = list(magpie_generator.process())[:batch_size]
|
| 103 |
+
magpie_results.extend([item[0] for item in batch])
|
| 104 |
+
progress(0.5, desc="(1/2) Generating instructions")
|
| 105 |
|
| 106 |
+
# generate responses
|
| 107 |
+
response_results = []
|
| 108 |
+
if num_turns == 1:
|
| 109 |
+
for i in range(0, num_rows, batch_size):
|
|
|
|
|
|
|
| 110 |
progress(
|
| 111 |
+
0.5 + 0.5 * min(i + batch_size, num_rows) / num_rows,
|
| 112 |
+
total=total_steps,
|
| 113 |
+
desc="(2/2) Generating responses",
|
| 114 |
)
|
| 115 |
+
batch = magpie_results[i : i + batch_size]
|
| 116 |
+
batch = [entry[0] for entry in batch]
|
| 117 |
+
responses = list(response_generator.process(inputs=batch))
|
| 118 |
+
response_results.extend(responses)
|
| 119 |
+
for result in response_results[0]:
|
| 120 |
+
result["prompt"] = result["instruction"]
|
| 121 |
+
result["completion"] = result["generation"]
|
| 122 |
+
result["system_prompt"] = system_prompt
|
| 123 |
+
else:
|
| 124 |
+
for result in magpie_results:
|
| 125 |
+
result[0]["conversation"].insert(
|
| 126 |
+
0, {"role": "system", "content": system_prompt}
|
| 127 |
+
)
|
| 128 |
+
result[0]["messages"] = result[0]["conversation"]
|
| 129 |
+
for i in range(0, num_rows, batch_size):
|
| 130 |
+
progress(
|
| 131 |
+
0.5 + 0.5 * min(i + batch_size, num_rows) / num_rows,
|
| 132 |
+
total=total_steps,
|
| 133 |
+
desc="(2/2) Generating responses",
|
| 134 |
+
)
|
| 135 |
+
batch = magpie_results[i : i + batch_size]
|
| 136 |
+
batch = [entry[0] for entry in batch]
|
| 137 |
+
responses = list(response_generator.process(inputs=batch))
|
| 138 |
+
response_results.extend(responses)
|
| 139 |
+
|
| 140 |
+
for result in response_results[0]:
|
| 141 |
+
result["messages"].append(
|
| 142 |
+
{"role": "assistant", "content": result["generation"]}
|
| 143 |
+
)
|
| 144 |
+
progress(
|
| 145 |
+
1,
|
| 146 |
+
total=total_steps,
|
| 147 |
+
desc="(2/2) Generating responses",
|
| 148 |
+
)
|
| 149 |
|
| 150 |
+
# create distiset
|
| 151 |
+
distiset_results = []
|
| 152 |
+
for result in response_results[0]:
|
| 153 |
+
record = {}
|
| 154 |
+
for relevant_keys in [
|
| 155 |
+
"messages",
|
| 156 |
+
"prompt",
|
| 157 |
+
"completion",
|
| 158 |
+
"model_name",
|
| 159 |
+
"system_prompt",
|
| 160 |
+
]:
|
| 161 |
+
if relevant_keys in result:
|
| 162 |
+
record[relevant_keys] = result[relevant_keys]
|
| 163 |
+
distiset_results.append(record)
|
| 164 |
+
|
| 165 |
+
distiset = Distiset(
|
| 166 |
+
{
|
| 167 |
+
"default": Dataset.from_list(distiset_results),
|
| 168 |
+
}
|
| 169 |
+
)
|
| 170 |
|
| 171 |
# If not pushing to hub generate the dataset directly
|
| 172 |
+
distiset = distiset["default"]
|
| 173 |
if num_turns == 1:
|
| 174 |
+
outputs = distiset.to_pandas()[["system_prompt", "prompt", "completion"]]
|
| 175 |
else:
|
| 176 |
outputs = distiset.to_pandas()[["messages"]]
|
| 177 |
dataframe = pd.DataFrame(outputs)
|
|
|
|
| 178 |
progress(1.0, desc="Dataset generation completed")
|
| 179 |
return dataframe
|
| 180 |
|
|
|
|
| 270 |
)
|
| 271 |
|
| 272 |
with gr.Row():
|
| 273 |
+
sample_dataset = gr.Dataframe(
|
| 274 |
value=DEFAULT_DATASETS[0],
|
| 275 |
label="Sample dataset. Prompts and completions truncated to 256 tokens.",
|
| 276 |
interactive=False,
|
|
|
|
| 348 |
value="Push to Hub", variant="primary", scale=2
|
| 349 |
)
|
| 350 |
with gr.Row():
|
| 351 |
+
final_dataset = gr.Dataframe(
|
| 352 |
value=DEFAULT_DATASETS[0],
|
| 353 |
label="Generated dataset",
|
| 354 |
interactive=False,
|
src/distilabel_dataset_generator/pipelines/sft.py
CHANGED
|
@@ -1,10 +1,12 @@
|
|
| 1 |
import pandas as pd
|
|
|
|
|
|
|
| 2 |
from distilabel.llms import InferenceEndpointsLLM
|
| 3 |
from distilabel.pipeline import Pipeline
|
| 4 |
from distilabel.steps import KeepColumns
|
| 5 |
-
from distilabel.steps.tasks import MagpieGenerator, TextGeneration
|
| 6 |
|
| 7 |
-
from
|
| 8 |
|
| 9 |
INFORMATION_SEEKING_PROMPT = (
|
| 10 |
"You are an AI assistant designed to provide accurate and concise information on a wide"
|
|
@@ -118,7 +120,7 @@ The prompt you write should follow the same style and structure as the following
|
|
| 118 |
User dataset description:
|
| 119 |
"""
|
| 120 |
|
| 121 |
-
MODEL = "meta-llama/Meta-Llama-3.1-
|
| 122 |
DEFAULT_DATASET_DESCRIPTIONS = (
|
| 123 |
"rude customer assistant for a phone company",
|
| 124 |
"assistant that solves math puzzles using python",
|
|
@@ -155,7 +157,7 @@ _STOP_SEQUENCES = [
|
|
| 155 |
"assistant",
|
| 156 |
" \n\n",
|
| 157 |
]
|
| 158 |
-
DEFAULT_BATCH_SIZE =
|
| 159 |
TOKEN_INDEX = 0
|
| 160 |
|
| 161 |
|
|
@@ -198,7 +200,7 @@ with Pipeline(name="sft") as pipeline:
|
|
| 198 |
output_mappings={input_mappings},
|
| 199 |
)
|
| 200 |
keep_columns = KeepColumns(
|
| 201 |
-
columns={list(input_mappings.values())} + ["model_name"],
|
| 202 |
)
|
| 203 |
magpie.connect(keep_columns)
|
| 204 |
|
|
@@ -208,92 +210,101 @@ if __name__ == "__main__":
|
|
| 208 |
return code
|
| 209 |
|
| 210 |
|
| 211 |
-
def
|
| 212 |
global TOKEN_INDEX
|
| 213 |
-
input_mappings = _get_output_mappings(num_turns)
|
| 214 |
-
output_mappings = input_mappings
|
| 215 |
api_key = HF_TOKENS[TOKEN_INDEX % len(HF_TOKENS)]
|
| 216 |
TOKEN_INDEX += 1
|
| 217 |
-
|
| 218 |
-
print("is sample?", is_sample)
|
| 219 |
-
if num_turns == 1:
|
| 220 |
-
with Pipeline(name="sft") as pipeline:
|
| 221 |
-
magpie = MagpieGenerator(
|
| 222 |
-
llm=InferenceEndpointsLLM(
|
| 223 |
-
model_id=MODEL,
|
| 224 |
-
tokenizer_id=MODEL,
|
| 225 |
-
api_key=api_key,
|
| 226 |
-
magpie_pre_query_template="llama3",
|
| 227 |
-
generation_kwargs={
|
| 228 |
-
"temperature": 0.8, # it's the best value for Llama 3.1 70B Instruct
|
| 229 |
-
"do_sample": True,
|
| 230 |
-
"max_new_tokens": 256 if is_sample else 512,
|
| 231 |
-
"stop_sequences": _STOP_SEQUENCES,
|
| 232 |
-
},
|
| 233 |
-
),
|
| 234 |
-
batch_size=DEFAULT_BATCH_SIZE,
|
| 235 |
-
n_turns=num_turns,
|
| 236 |
-
num_rows=num_rows,
|
| 237 |
-
system_prompt=system_prompt,
|
| 238 |
-
output_mappings={"instruction": "prompt"},
|
| 239 |
-
only_instruction=True,
|
| 240 |
-
)
|
| 241 |
|
| 242 |
-
generate_response = TextGeneration(
|
| 243 |
-
llm=InferenceEndpointsLLM(
|
| 244 |
-
model_id=MODEL,
|
| 245 |
-
tokenizer_id=MODEL,
|
| 246 |
-
api_key=api_key,
|
| 247 |
-
generation_kwargs={
|
| 248 |
-
"temperature": 0.8,
|
| 249 |
-
"max_new_tokens": 256 if is_sample else 1024,
|
| 250 |
-
},
|
| 251 |
-
),
|
| 252 |
-
system_prompt=system_prompt,
|
| 253 |
-
output_mappings={"generation": "completion"},
|
| 254 |
-
input_mappings={"instruction": "prompt"},
|
| 255 |
-
)
|
| 256 |
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 260 |
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 264 |
else:
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
n_turns=num_turns,
|
| 281 |
-
num_rows=num_rows,
|
| 282 |
-
system_prompt=system_prompt,
|
| 283 |
-
output_mappings=output_mappings,
|
| 284 |
-
)
|
| 285 |
-
keep_columns = KeepColumns(
|
| 286 |
-
columns=list(output_mappings.values()) + ["model_name"],
|
| 287 |
-
)
|
| 288 |
-
magpie.connect(keep_columns)
|
| 289 |
-
return pipeline
|
| 290 |
|
| 291 |
|
| 292 |
-
def
|
| 293 |
global TOKEN_INDEX
|
| 294 |
api_key = HF_TOKENS[TOKEN_INDEX % len(HF_TOKENS)]
|
| 295 |
TOKEN_INDEX += 1
|
| 296 |
-
|
| 297 |
llm=InferenceEndpointsLLM(
|
| 298 |
api_key=api_key,
|
| 299 |
model_id=MODEL,
|
|
@@ -306,13 +317,30 @@ def get_prompt_generation_step():
|
|
| 306 |
),
|
| 307 |
use_system_prompt=True,
|
| 308 |
)
|
| 309 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 310 |
|
| 311 |
|
| 312 |
if __name__ == "__main__":
|
| 313 |
-
prompt_generation_step =
|
| 314 |
-
|
| 315 |
-
result = next(
|
| 316 |
prompt_generation_step.process(
|
| 317 |
[
|
| 318 |
{
|
|
@@ -322,5 +350,64 @@ if __name__ == "__main__":
|
|
| 322 |
]
|
| 323 |
)
|
| 324 |
)[0]["generation"]
|
| 325 |
-
|
| 326 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import pandas as pd
|
| 2 |
+
from datasets import Dataset
|
| 3 |
+
from distilabel.distiset import Distiset
|
| 4 |
from distilabel.llms import InferenceEndpointsLLM
|
| 5 |
from distilabel.pipeline import Pipeline
|
| 6 |
from distilabel.steps import KeepColumns
|
| 7 |
+
from distilabel.steps.tasks import ChatGeneration, MagpieGenerator, TextGeneration
|
| 8 |
|
| 9 |
+
from distilabel_dataset_generator.utils import HF_TOKENS
|
| 10 |
|
| 11 |
INFORMATION_SEEKING_PROMPT = (
|
| 12 |
"You are an AI assistant designed to provide accurate and concise information on a wide"
|
|
|
|
| 120 |
User dataset description:
|
| 121 |
"""
|
| 122 |
|
| 123 |
+
MODEL = "meta-llama/Meta-Llama-3.1-8B-Instruct"
|
| 124 |
DEFAULT_DATASET_DESCRIPTIONS = (
|
| 125 |
"rude customer assistant for a phone company",
|
| 126 |
"assistant that solves math puzzles using python",
|
|
|
|
| 157 |
"assistant",
|
| 158 |
" \n\n",
|
| 159 |
]
|
| 160 |
+
DEFAULT_BATCH_SIZE = 5
|
| 161 |
TOKEN_INDEX = 0
|
| 162 |
|
| 163 |
|
|
|
|
| 200 |
output_mappings={input_mappings},
|
| 201 |
)
|
| 202 |
keep_columns = KeepColumns(
|
| 203 |
+
columns={list(input_mappings.values())} + ["model_name", "system_prompt"],
|
| 204 |
)
|
| 205 |
magpie.connect(keep_columns)
|
| 206 |
|
|
|
|
| 210 |
return code
|
| 211 |
|
| 212 |
|
| 213 |
+
def _get_next_api_key():
|
| 214 |
global TOKEN_INDEX
|
|
|
|
|
|
|
| 215 |
api_key = HF_TOKENS[TOKEN_INDEX % len(HF_TOKENS)]
|
| 216 |
TOKEN_INDEX += 1
|
| 217 |
+
return api_key
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 218 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 219 |
|
| 220 |
+
def get_magpie_generator(num_turns, num_rows, system_prompt, is_sample):
|
| 221 |
+
input_mappings = _get_output_mappings(num_turns)
|
| 222 |
+
output_mappings = input_mappings.copy()
|
| 223 |
+
if num_turns == 1:
|
| 224 |
+
magpie_generator = MagpieGenerator(
|
| 225 |
+
llm=InferenceEndpointsLLM(
|
| 226 |
+
model_id=MODEL,
|
| 227 |
+
tokenizer_id=MODEL,
|
| 228 |
+
api_key=_get_next_api_key(),
|
| 229 |
+
magpie_pre_query_template="llama3",
|
| 230 |
+
generation_kwargs={
|
| 231 |
+
"temperature": 0.8,
|
| 232 |
+
"do_sample": True,
|
| 233 |
+
"max_new_tokens": 256 if is_sample else 512,
|
| 234 |
+
"stop_sequences": _STOP_SEQUENCES,
|
| 235 |
+
},
|
| 236 |
+
),
|
| 237 |
+
batch_size=DEFAULT_BATCH_SIZE,
|
| 238 |
+
n_turns=num_turns,
|
| 239 |
+
num_rows=num_rows,
|
| 240 |
+
system_prompt=system_prompt,
|
| 241 |
+
output_mappings=output_mappings,
|
| 242 |
+
only_instruction=True,
|
| 243 |
+
)
|
| 244 |
+
else:
|
| 245 |
+
magpie_generator = MagpieGenerator(
|
| 246 |
+
llm=InferenceEndpointsLLM(
|
| 247 |
+
model_id=MODEL,
|
| 248 |
+
tokenizer_id=MODEL,
|
| 249 |
+
api_key=_get_next_api_key(),
|
| 250 |
+
magpie_pre_query_template="llama3",
|
| 251 |
+
generation_kwargs={
|
| 252 |
+
"temperature": 0.8,
|
| 253 |
+
"do_sample": True,
|
| 254 |
+
"max_new_tokens": 256 if is_sample else 1024,
|
| 255 |
+
"stop_sequences": _STOP_SEQUENCES,
|
| 256 |
+
},
|
| 257 |
+
),
|
| 258 |
+
batch_size=DEFAULT_BATCH_SIZE,
|
| 259 |
+
end_with_user=True,
|
| 260 |
+
n_turns=num_turns,
|
| 261 |
+
num_rows=num_rows,
|
| 262 |
+
system_prompt=system_prompt,
|
| 263 |
+
output_mappings=output_mappings,
|
| 264 |
+
)
|
| 265 |
+
magpie_generator.load()
|
| 266 |
+
return magpie_generator
|
| 267 |
|
| 268 |
+
|
| 269 |
+
def get_response_generator(num_turns, system_prompt, is_sample):
|
| 270 |
+
if num_turns == 1:
|
| 271 |
+
response_generator = TextGeneration(
|
| 272 |
+
llm=InferenceEndpointsLLM(
|
| 273 |
+
model_id=MODEL,
|
| 274 |
+
tokenizer_id=MODEL,
|
| 275 |
+
api_key=_get_next_api_key(),
|
| 276 |
+
generation_kwargs={
|
| 277 |
+
"temperature": 0.8,
|
| 278 |
+
"max_new_tokens": 256 if is_sample else 1024,
|
| 279 |
+
},
|
| 280 |
+
),
|
| 281 |
+
system_prompt=system_prompt,
|
| 282 |
+
output_mappings={"generation": "completion"},
|
| 283 |
+
input_mappings={"instruction": "prompt"},
|
| 284 |
+
)
|
| 285 |
else:
|
| 286 |
+
response_generator = ChatGeneration(
|
| 287 |
+
llm=InferenceEndpointsLLM(
|
| 288 |
+
model_id=MODEL,
|
| 289 |
+
tokenizer_id=MODEL,
|
| 290 |
+
api_key=_get_next_api_key(),
|
| 291 |
+
generation_kwargs={
|
| 292 |
+
"temperature": 0.8,
|
| 293 |
+
"max_new_tokens": 2048,
|
| 294 |
+
},
|
| 295 |
+
),
|
| 296 |
+
output_mappings={"generation": "completion"},
|
| 297 |
+
input_mappings={"conversation": "messages"},
|
| 298 |
+
)
|
| 299 |
+
response_generator.load()
|
| 300 |
+
return response_generator
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 301 |
|
| 302 |
|
| 303 |
+
def get_prompt_generator():
|
| 304 |
global TOKEN_INDEX
|
| 305 |
api_key = HF_TOKENS[TOKEN_INDEX % len(HF_TOKENS)]
|
| 306 |
TOKEN_INDEX += 1
|
| 307 |
+
prompt_generator = TextGeneration(
|
| 308 |
llm=InferenceEndpointsLLM(
|
| 309 |
api_key=api_key,
|
| 310 |
model_id=MODEL,
|
|
|
|
| 317 |
),
|
| 318 |
use_system_prompt=True,
|
| 319 |
)
|
| 320 |
+
prompt_generator.load()
|
| 321 |
+
return prompt_generator
|
| 322 |
+
|
| 323 |
+
|
| 324 |
+
def get_pipeline(num_turns, num_rows, system_prompt, is_sample):
|
| 325 |
+
input_mappings = _get_output_mappings(num_turns)
|
| 326 |
+
output_mappings = input_mappings
|
| 327 |
+
|
| 328 |
+
with Pipeline(name="sft") as pipeline:
|
| 329 |
+
magpie = get_magpie_generator(num_turns, num_rows, system_prompt, is_sample)
|
| 330 |
+
generate_response = get_response_generator(system_prompt, is_sample)
|
| 331 |
+
|
| 332 |
+
keep_columns = KeepColumns(
|
| 333 |
+
columns=list(output_mappings.values()) + ["model_name"],
|
| 334 |
+
)
|
| 335 |
+
|
| 336 |
+
magpie.connect(generate_response)
|
| 337 |
+
generate_response.connect(keep_columns)
|
| 338 |
+
return pipeline
|
| 339 |
|
| 340 |
|
| 341 |
if __name__ == "__main__":
|
| 342 |
+
prompt_generation_step = get_prompt_generator()
|
| 343 |
+
system_prompt = next(
|
|
|
|
| 344 |
prompt_generation_step.process(
|
| 345 |
[
|
| 346 |
{
|
|
|
|
| 350 |
]
|
| 351 |
)
|
| 352 |
)[0]["generation"]
|
| 353 |
+
num_rows = 2
|
| 354 |
+
num_turns = 1
|
| 355 |
+
magpie_generator = get_magpie_generator(num_turns, num_rows, system_prompt, False)
|
| 356 |
+
response_generator = get_response_generator(num_turns, system_prompt, False)
|
| 357 |
+
total_steps = num_rows * 2
|
| 358 |
+
batch_size = 5 # Adjust this value as needed
|
| 359 |
+
|
| 360 |
+
# create instructions
|
| 361 |
+
magpie_results = []
|
| 362 |
+
for i in range(0, num_rows, batch_size):
|
| 363 |
+
batch = list(magpie_generator.process())[:batch_size]
|
| 364 |
+
magpie_results.extend([item[0] for item in batch])
|
| 365 |
+
|
| 366 |
+
# generate responses
|
| 367 |
+
response_results = []
|
| 368 |
+
if num_turns == 1:
|
| 369 |
+
for i in range(0, len(magpie_results), batch_size):
|
| 370 |
+
batch = magpie_results[i : i + batch_size]
|
| 371 |
+
batch = [entry[0] for entry in batch]
|
| 372 |
+
responses = list(response_generator.process(inputs=batch))
|
| 373 |
+
response_results.extend(responses)
|
| 374 |
+
for result in response_results:
|
| 375 |
+
result[0]["prompt"] = result[0]["instruction"]
|
| 376 |
+
result[0]["completion"] = result[0]["generation"]
|
| 377 |
+
result[0]["system_prompt"] = system_prompt
|
| 378 |
+
else:
|
| 379 |
+
for result in magpie_results:
|
| 380 |
+
result[0]["conversation"].insert(
|
| 381 |
+
0, {"role": "system", "content": system_prompt}
|
| 382 |
+
)
|
| 383 |
+
result[0]["messages"] = result[0]["conversation"]
|
| 384 |
+
for i in range(0, len(magpie_results), batch_size):
|
| 385 |
+
batch = magpie_results[i : i + batch_size]
|
| 386 |
+
batch = [entry[0] for entry in batch]
|
| 387 |
+
responses = list(response_generator.process(inputs=batch))
|
| 388 |
+
response_results.extend(responses)
|
| 389 |
+
|
| 390 |
+
for result in response_results:
|
| 391 |
+
result[0]["messages"].append(
|
| 392 |
+
{"role": "assistant", "content": result[0]["generation"]}
|
| 393 |
+
)
|
| 394 |
+
|
| 395 |
+
distiset_results = []
|
| 396 |
+
for result in response_results[0]:
|
| 397 |
+
record = {}
|
| 398 |
+
for relevant_keys in [
|
| 399 |
+
"messages",
|
| 400 |
+
"prompt",
|
| 401 |
+
"completion",
|
| 402 |
+
"model_name",
|
| 403 |
+
"system_prompt",
|
| 404 |
+
]:
|
| 405 |
+
if relevant_keys in result:
|
| 406 |
+
record[relevant_keys] = result[relevant_keys]
|
| 407 |
+
distiset_results.append(record)
|
| 408 |
+
|
| 409 |
+
distiset = Distiset(
|
| 410 |
+
{
|
| 411 |
+
"default": Dataset.from_list(distiset_results),
|
| 412 |
+
}
|
| 413 |
+
)
|