Daksh0505 commited on
Commit
1e9abcf
ยท
verified ยท
1 Parent(s): 7052cf8

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +196 -0
app.py ADDED
@@ -0,0 +1,196 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import tensorflow as tf
3
+ import json
4
+ import joblib
5
+ import numpy as np
6
+ import pandas as pd
7
+ from tensorflow.keras.preprocessing.sequence import pad_sequences
8
+ from tensorflow.keras.preprocessing.text import Tokenizer
9
+ from datetime import datetime
10
+ import os
11
+ import gspread
12
+ from google.oauth2.service_account import Credentials
13
+ from tensorflow.keras.models import load_model
14
+ from huggingface_hub import hf_hub_download
15
+ from tensorflow.keras.preprocessing.text import tokenizer_from_json
16
+
17
+ def save_to_google_sheet(data):
18
+ scope = [
19
+ "https://spreadsheets.google.com/feeds",
20
+ "https://www.googleapis.com/auth/drive"
21
+ ]
22
+
23
+ # Convert Streamlit's AttrDict to a normal dict (correct way)
24
+ creds_dict = {k: v for k, v in st.secrets["gcp_credentials"].items()}
25
+
26
+ # Handle multiline private key properly
27
+ if "private_key" in creds_dict:
28
+ creds_dict["private_key"] = creds_dict["private_key"].replace("\\n", "\n")
29
+
30
+ # Authenticate and connect
31
+ creds = Credentials.from_service_account_info(creds_dict, scopes=scope)
32
+ client = gspread.authorize(creds)
33
+ sheet = client.open("Sentiment Feedback Log").sheet1
34
+
35
+ # Append row
36
+ sheet.append_row([
37
+ data.get("timestamp", ""),
38
+ data.get("username", ""),
39
+ data.get("user_id", ""),
40
+ data.get("text", ""),
41
+ data.get("model_a", ""),
42
+ data.get("model_b", ""),
43
+ data.get("ensemble", ""),
44
+ data.get("feedback", "")
45
+ ])
46
+
47
+
48
+ st.set_page_config(page_title="Sentiment Model Comparison", layout="wide")
49
+ st.title("๐Ÿ“Š Sentiment Classifier Comparison")
50
+
51
+ # --- Load models and tokenizers ---
52
+ import streamlit as st
53
+ from huggingface_hub import hf_hub_download
54
+ from tensorflow.keras.models import load_model
55
+ from tensorflow.keras.preprocessing.text import tokenizer_from_json
56
+ import json
57
+
58
+ @st.cache_resource
59
+ def load_model_and_tokenizer(model_file, tokenizer_file):
60
+ model_path = hf_hub_download(repo_id="Daksh0505/sentiment-model-imdb", filename=model_file)
61
+ tokenizer_path = hf_hub_download(repo_id="Daksh0505/sentiment-model-imdb", filename=tokenizer_file)
62
+
63
+ with open(tokenizer_path, "r") as f:
64
+ tokenizer = tokenizer_from_json(f.read())
65
+
66
+ model = load_model(model_path)
67
+ return model, tokenizer
68
+
69
+ # === Load Cached Models ===
70
+ model_a, tokenizer_a = load_model_and_tokenizer("sentiment_model_imdb_6.6M.keras", "tokenizer_50k.json") # 6.6M params & 50K vocab
71
+ model_b, tokenizer_b = load_model_and_tokenizer("sentiment_model_imdb_34M.keras", "tokenizer_256k.json") # 34M params & 256K vocab
72
+
73
+ # --- Constants ---
74
+ maxlen = 300
75
+ labels = ["Negative", "Neutral", "Positive"]
76
+
77
+ # --- Preprocess ---
78
+ def preprocess(text, tokenizer):
79
+ text = text.lower()
80
+ seq = tokenizer.texts_to_sequences([text])
81
+ padded = pad_sequences(seq, maxlen=maxlen, padding='post')
82
+ return padded
83
+
84
+ # --- Format Output ---
85
+ def format_probs(probs):
86
+ return {labels[i]: f"{probs[i]*100:.2f}%" for i in range(3)}
87
+
88
+ # --- Text Input ---
89
+ st.markdown("### ๐Ÿ“ Enter a review:")
90
+ text = st.text_area("", height=150)
91
+
92
+ # --- File Upload ---
93
+ st.markdown("---")
94
+ file = st.file_uploader("๐Ÿ“‚ Or upload a CSV file with a 'review' column for bulk analysis", type=["csv"])
95
+
96
+ # Optional: User identification
97
+ user_name = st.text_input("๐Ÿ” Enter your name:")
98
+ user_id = st.text_input("๐Ÿ” Enter your email (optional):")
99
+
100
+ pred_a = pred_b = ensemble_label = None
101
+
102
+ if st.button("๐Ÿ” Analyze") and (text.strip() or file):
103
+ if text.strip():
104
+ padded_a = preprocess(text, tokenizer_a)
105
+ padded_b = preprocess(text, tokenizer_b)
106
+ pred_a = model_a.predict(padded_a)[0]
107
+ pred_b = model_b.predict(padded_b)[0]
108
+ ensemble_pred = (pred_a + pred_b) / 2
109
+ ensemble_label = labels[int(ensemble_pred.argmax())]
110
+
111
+ col1, col2, col3 = st.columns(3)
112
+
113
+ with col1:
114
+ st.subheader("๐Ÿ”น Model A")
115
+ st.caption("๐Ÿง  6M Parameters | ๐Ÿ“– 50k Vocab")
116
+ st.markdown(" | ".join([f"**{l}:** {v}" for l, v in format_probs(pred_a).items()]))
117
+ st.write(f"โ†’ **Predicted:** _{labels[int(pred_a.argmax())]}_")
118
+
119
+ with col2:
120
+ st.subheader("๐Ÿ”ธ Model B")
121
+ st.caption("๐Ÿง  34M Parameters | ๐Ÿ“– 256k Vocab")
122
+ st.markdown(" | ".join([f"**{l}:** {v}" for l, v in format_probs(pred_b).items()]))
123
+ st.write(f"โ†’ **Predicted:** _{labels[int(pred_b.argmax())]}_")
124
+
125
+ with col3:
126
+ st.subheader("โš–๏ธ Ensemble Average")
127
+ st.caption("๐Ÿงฎ Averaged Output (A + B)")
128
+ st.markdown(" | ".join([f"**{l}:** {v}" for l, v in format_probs(ensemble_pred).items()]))
129
+ st.write(f"โ†’ **Final Sentiment:** โœ… _{ensemble_label}_")
130
+
131
+ st.markdown("### ๐Ÿ“ˆ Confidence Comparison")
132
+ st.bar_chart({
133
+ "Model A": pred_a,
134
+ "Model B": pred_b,
135
+ "Ensemble": ensemble_pred
136
+ })
137
+
138
+ if file:
139
+ df = pd.read_csv(file)
140
+ if 'review' not in df.columns:
141
+ st.error("CSV must contain a 'review' column.")
142
+ else:
143
+ preds = []
144
+ for text in df['review']:
145
+ padded_a = preprocess(text, tokenizer_a)
146
+ padded_b = preprocess(text, tokenizer_b)
147
+ pred_a = model_a.predict(padded_a)[0]
148
+ pred_b = model_b.predict(padded_b)[0]
149
+ ensemble = (pred_a + pred_b) / 2
150
+ preds.append(labels[int(ensemble.argmax())])
151
+
152
+ df['Predicted Sentiment'] = preds
153
+ st.dataframe(df)
154
+ st.download_button("๐Ÿ“ฅ Download Results", df.to_csv(index=False), file_name="sentiment_predictions.csv")
155
+
156
+ # --- Info Panel ---
157
+ with st.expander("โ„น๏ธ Model Details"):
158
+ st.markdown("""
159
+ - **Model A**: Smaller model, faster, trained on 50k vocab.
160
+ - **Model B**: Larger model, more accurate, trained on 256k vocab.
161
+ - Ensemble averages predictions from both.
162
+ """)
163
+
164
+ # --- Feedback ---
165
+ st.markdown("---")
166
+ st.markdown("### ๐Ÿ’ฌ Feedback")
167
+ feedback = st.radio("Was the prediction helpful?", ["๐Ÿ‘ Yes", "๐Ÿ‘Ž No", "No comment"], horizontal=True)
168
+
169
+ if feedback and (user_name.strip() or user_id.strip() or text.strip()):
170
+ st.success("Thanks for your feedback! โœ…")
171
+
172
+ feedback_data = {
173
+ "timestamp": datetime.now().isoformat(),
174
+ "username": user_name,
175
+ "user_id": user_id,
176
+ "text": text if text else None,
177
+ "model_a": labels[int(pred_a.argmax())] if pred_a is not None else None,
178
+ "model_b": labels[int(pred_b.argmax())] if pred_b is not None else None,
179
+ "ensemble": ensemble_label if ensemble_label is not None else None,
180
+ "feedback": feedback if feedback != "No comment" else None,
181
+ }
182
+
183
+ # Save to local CSV
184
+ log_path = "user_feedback.csv"
185
+ feedback_df = pd.DataFrame([feedback_data])
186
+ if not os.path.exists(log_path):
187
+ feedback_df.to_csv(log_path, index=False)
188
+ else:
189
+ feedback_df.to_csv(log_path, mode='a', header=False, index=False)
190
+
191
+ # Save to Google Sheets
192
+ try:
193
+ save_to_google_sheet(feedback_data)
194
+ except Exception as e:
195
+ st.error(f"Error saving feedback to Google Sheets: {e}")
196
+