Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import tensorflow as tf
|
| 3 |
+
import json
|
| 4 |
+
import joblib
|
| 5 |
+
import numpy as np
|
| 6 |
+
import pandas as pd
|
| 7 |
+
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
| 8 |
+
from tensorflow.keras.preprocessing.text import Tokenizer
|
| 9 |
+
from datetime import datetime
|
| 10 |
+
import os
|
| 11 |
+
import gspread
|
| 12 |
+
from google.oauth2.service_account import Credentials
|
| 13 |
+
from tensorflow.keras.models import load_model
|
| 14 |
+
from huggingface_hub import hf_hub_download
|
| 15 |
+
from tensorflow.keras.preprocessing.text import tokenizer_from_json
|
| 16 |
+
|
| 17 |
+
def save_to_google_sheet(data):
|
| 18 |
+
scope = [
|
| 19 |
+
"https://spreadsheets.google.com/feeds",
|
| 20 |
+
"https://www.googleapis.com/auth/drive"
|
| 21 |
+
]
|
| 22 |
+
|
| 23 |
+
# Convert Streamlit's AttrDict to a normal dict (correct way)
|
| 24 |
+
creds_dict = {k: v for k, v in st.secrets["gcp_credentials"].items()}
|
| 25 |
+
|
| 26 |
+
# Handle multiline private key properly
|
| 27 |
+
if "private_key" in creds_dict:
|
| 28 |
+
creds_dict["private_key"] = creds_dict["private_key"].replace("\\n", "\n")
|
| 29 |
+
|
| 30 |
+
# Authenticate and connect
|
| 31 |
+
creds = Credentials.from_service_account_info(creds_dict, scopes=scope)
|
| 32 |
+
client = gspread.authorize(creds)
|
| 33 |
+
sheet = client.open("Sentiment Feedback Log").sheet1
|
| 34 |
+
|
| 35 |
+
# Append row
|
| 36 |
+
sheet.append_row([
|
| 37 |
+
data.get("timestamp", ""),
|
| 38 |
+
data.get("username", ""),
|
| 39 |
+
data.get("user_id", ""),
|
| 40 |
+
data.get("text", ""),
|
| 41 |
+
data.get("model_a", ""),
|
| 42 |
+
data.get("model_b", ""),
|
| 43 |
+
data.get("ensemble", ""),
|
| 44 |
+
data.get("feedback", "")
|
| 45 |
+
])
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
st.set_page_config(page_title="Sentiment Model Comparison", layout="wide")
|
| 49 |
+
st.title("๐ Sentiment Classifier Comparison")
|
| 50 |
+
|
| 51 |
+
# --- Load models and tokenizers ---
|
| 52 |
+
import streamlit as st
|
| 53 |
+
from huggingface_hub import hf_hub_download
|
| 54 |
+
from tensorflow.keras.models import load_model
|
| 55 |
+
from tensorflow.keras.preprocessing.text import tokenizer_from_json
|
| 56 |
+
import json
|
| 57 |
+
|
| 58 |
+
@st.cache_resource
|
| 59 |
+
def load_model_and_tokenizer(model_file, tokenizer_file):
|
| 60 |
+
model_path = hf_hub_download(repo_id="Daksh0505/sentiment-model-imdb", filename=model_file)
|
| 61 |
+
tokenizer_path = hf_hub_download(repo_id="Daksh0505/sentiment-model-imdb", filename=tokenizer_file)
|
| 62 |
+
|
| 63 |
+
with open(tokenizer_path, "r") as f:
|
| 64 |
+
tokenizer = tokenizer_from_json(f.read())
|
| 65 |
+
|
| 66 |
+
model = load_model(model_path)
|
| 67 |
+
return model, tokenizer
|
| 68 |
+
|
| 69 |
+
# === Load Cached Models ===
|
| 70 |
+
model_a, tokenizer_a = load_model_and_tokenizer("sentiment_model_imdb_6.6M.keras", "tokenizer_50k.json") # 6.6M params & 50K vocab
|
| 71 |
+
model_b, tokenizer_b = load_model_and_tokenizer("sentiment_model_imdb_34M.keras", "tokenizer_256k.json") # 34M params & 256K vocab
|
| 72 |
+
|
| 73 |
+
# --- Constants ---
|
| 74 |
+
maxlen = 300
|
| 75 |
+
labels = ["Negative", "Neutral", "Positive"]
|
| 76 |
+
|
| 77 |
+
# --- Preprocess ---
|
| 78 |
+
def preprocess(text, tokenizer):
|
| 79 |
+
text = text.lower()
|
| 80 |
+
seq = tokenizer.texts_to_sequences([text])
|
| 81 |
+
padded = pad_sequences(seq, maxlen=maxlen, padding='post')
|
| 82 |
+
return padded
|
| 83 |
+
|
| 84 |
+
# --- Format Output ---
|
| 85 |
+
def format_probs(probs):
|
| 86 |
+
return {labels[i]: f"{probs[i]*100:.2f}%" for i in range(3)}
|
| 87 |
+
|
| 88 |
+
# --- Text Input ---
|
| 89 |
+
st.markdown("### ๐ Enter a review:")
|
| 90 |
+
text = st.text_area("", height=150)
|
| 91 |
+
|
| 92 |
+
# --- File Upload ---
|
| 93 |
+
st.markdown("---")
|
| 94 |
+
file = st.file_uploader("๐ Or upload a CSV file with a 'review' column for bulk analysis", type=["csv"])
|
| 95 |
+
|
| 96 |
+
# Optional: User identification
|
| 97 |
+
user_name = st.text_input("๐ Enter your name:")
|
| 98 |
+
user_id = st.text_input("๐ Enter your email (optional):")
|
| 99 |
+
|
| 100 |
+
pred_a = pred_b = ensemble_label = None
|
| 101 |
+
|
| 102 |
+
if st.button("๐ Analyze") and (text.strip() or file):
|
| 103 |
+
if text.strip():
|
| 104 |
+
padded_a = preprocess(text, tokenizer_a)
|
| 105 |
+
padded_b = preprocess(text, tokenizer_b)
|
| 106 |
+
pred_a = model_a.predict(padded_a)[0]
|
| 107 |
+
pred_b = model_b.predict(padded_b)[0]
|
| 108 |
+
ensemble_pred = (pred_a + pred_b) / 2
|
| 109 |
+
ensemble_label = labels[int(ensemble_pred.argmax())]
|
| 110 |
+
|
| 111 |
+
col1, col2, col3 = st.columns(3)
|
| 112 |
+
|
| 113 |
+
with col1:
|
| 114 |
+
st.subheader("๐น Model A")
|
| 115 |
+
st.caption("๐ง 6M Parameters | ๐ 50k Vocab")
|
| 116 |
+
st.markdown(" | ".join([f"**{l}:** {v}" for l, v in format_probs(pred_a).items()]))
|
| 117 |
+
st.write(f"โ **Predicted:** _{labels[int(pred_a.argmax())]}_")
|
| 118 |
+
|
| 119 |
+
with col2:
|
| 120 |
+
st.subheader("๐ธ Model B")
|
| 121 |
+
st.caption("๐ง 34M Parameters | ๐ 256k Vocab")
|
| 122 |
+
st.markdown(" | ".join([f"**{l}:** {v}" for l, v in format_probs(pred_b).items()]))
|
| 123 |
+
st.write(f"โ **Predicted:** _{labels[int(pred_b.argmax())]}_")
|
| 124 |
+
|
| 125 |
+
with col3:
|
| 126 |
+
st.subheader("โ๏ธ Ensemble Average")
|
| 127 |
+
st.caption("๐งฎ Averaged Output (A + B)")
|
| 128 |
+
st.markdown(" | ".join([f"**{l}:** {v}" for l, v in format_probs(ensemble_pred).items()]))
|
| 129 |
+
st.write(f"โ **Final Sentiment:** โ
_{ensemble_label}_")
|
| 130 |
+
|
| 131 |
+
st.markdown("### ๐ Confidence Comparison")
|
| 132 |
+
st.bar_chart({
|
| 133 |
+
"Model A": pred_a,
|
| 134 |
+
"Model B": pred_b,
|
| 135 |
+
"Ensemble": ensemble_pred
|
| 136 |
+
})
|
| 137 |
+
|
| 138 |
+
if file:
|
| 139 |
+
df = pd.read_csv(file)
|
| 140 |
+
if 'review' not in df.columns:
|
| 141 |
+
st.error("CSV must contain a 'review' column.")
|
| 142 |
+
else:
|
| 143 |
+
preds = []
|
| 144 |
+
for text in df['review']:
|
| 145 |
+
padded_a = preprocess(text, tokenizer_a)
|
| 146 |
+
padded_b = preprocess(text, tokenizer_b)
|
| 147 |
+
pred_a = model_a.predict(padded_a)[0]
|
| 148 |
+
pred_b = model_b.predict(padded_b)[0]
|
| 149 |
+
ensemble = (pred_a + pred_b) / 2
|
| 150 |
+
preds.append(labels[int(ensemble.argmax())])
|
| 151 |
+
|
| 152 |
+
df['Predicted Sentiment'] = preds
|
| 153 |
+
st.dataframe(df)
|
| 154 |
+
st.download_button("๐ฅ Download Results", df.to_csv(index=False), file_name="sentiment_predictions.csv")
|
| 155 |
+
|
| 156 |
+
# --- Info Panel ---
|
| 157 |
+
with st.expander("โน๏ธ Model Details"):
|
| 158 |
+
st.markdown("""
|
| 159 |
+
- **Model A**: Smaller model, faster, trained on 50k vocab.
|
| 160 |
+
- **Model B**: Larger model, more accurate, trained on 256k vocab.
|
| 161 |
+
- Ensemble averages predictions from both.
|
| 162 |
+
""")
|
| 163 |
+
|
| 164 |
+
# --- Feedback ---
|
| 165 |
+
st.markdown("---")
|
| 166 |
+
st.markdown("### ๐ฌ Feedback")
|
| 167 |
+
feedback = st.radio("Was the prediction helpful?", ["๐ Yes", "๐ No", "No comment"], horizontal=True)
|
| 168 |
+
|
| 169 |
+
if feedback and (user_name.strip() or user_id.strip() or text.strip()):
|
| 170 |
+
st.success("Thanks for your feedback! โ
")
|
| 171 |
+
|
| 172 |
+
feedback_data = {
|
| 173 |
+
"timestamp": datetime.now().isoformat(),
|
| 174 |
+
"username": user_name,
|
| 175 |
+
"user_id": user_id,
|
| 176 |
+
"text": text if text else None,
|
| 177 |
+
"model_a": labels[int(pred_a.argmax())] if pred_a is not None else None,
|
| 178 |
+
"model_b": labels[int(pred_b.argmax())] if pred_b is not None else None,
|
| 179 |
+
"ensemble": ensemble_label if ensemble_label is not None else None,
|
| 180 |
+
"feedback": feedback if feedback != "No comment" else None,
|
| 181 |
+
}
|
| 182 |
+
|
| 183 |
+
# Save to local CSV
|
| 184 |
+
log_path = "user_feedback.csv"
|
| 185 |
+
feedback_df = pd.DataFrame([feedback_data])
|
| 186 |
+
if not os.path.exists(log_path):
|
| 187 |
+
feedback_df.to_csv(log_path, index=False)
|
| 188 |
+
else:
|
| 189 |
+
feedback_df.to_csv(log_path, mode='a', header=False, index=False)
|
| 190 |
+
|
| 191 |
+
# Save to Google Sheets
|
| 192 |
+
try:
|
| 193 |
+
save_to_google_sheet(feedback_data)
|
| 194 |
+
except Exception as e:
|
| 195 |
+
st.error(f"Error saving feedback to Google Sheets: {e}")
|
| 196 |
+
|