File size: 21,473 Bytes
feb5633 b0a502a 7f2fece feb5633 b0a502a feb5633 b0a502a feb5633 b0a502a feb5633 b0a502a feb5633 b0a502a feb5633 b0a502a feb5633 b0a502a feb5633 b0a502a feb5633 b0a502a feb5633 b0a502a feb5633 7f2fece feb5633 7f2fece feb5633 7f2fece feb5633 b0a502a feb5633 b0a502a feb5633 b0a502a feb5633 b0a502a feb5633 b0a502a feb5633 b0a502a feb5633 b0a502a feb5633 b0a502a feb5633 b0a502a feb5633 b0a502a feb5633 b0a502a feb5633 b0a502a feb5633 b0a502a feb5633 b0a502a feb5633 b0a502a feb5633 b0a502a feb5633 b0a502a feb5633 b0a502a feb5633 b0a502a feb5633 b0a502a feb5633 b0a502a feb5633 b0a502a feb5633 b0a502a feb5633 b0a502a feb5633 b0a502a feb5633 b0a502a feb5633 3581d64 feb5633 3581d64 feb5633 3581d64 feb5633 3581d64 feb5633 3581d64 b0a502a feb5633 b0a502a feb5633 b0a502a feb5633 b0a502a feb5633 b0a502a feb5633 b0a502a feb5633 b0a502a feb5633 b0a502a feb5633 b0a502a feb5633 b0a502a feb5633 b0a502a feb5633 b0a502a feb5633 b0a502a feb5633 b0a502a feb5633 7f2fece feb5633 7f2fece feb5633 7f2fece |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 |
#!/usr/bin/env python3
"""
Medical AI Assistant - FastAPI Only Version
Simplified endpoints for backend integration with Swagger UI
This file is Hugging Face Spaces compatible: the FastAPI app is exposed as 'app' at the module level.
"""
from fastapi import FastAPI, HTTPException, File, UploadFile, BackgroundTasks
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse
from fastapi.openapi.docs import get_swagger_ui_html
from fastapi.openapi.utils import get_openapi
from pydantic import BaseModel, Field
from typing import List, Optional, Dict, Any, Union
import logging
import uuid
import os
import json
import asyncio
from contextlib import asynccontextmanager
import time
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
# Initialize models globally
pipeline = None
whisper_model = None
async def load_models():
"""Load ML models asynchronously"""
global pipeline, whisper_model
try:
logger.info("Loading Medical AI models...")
from medical_ai import CompetitionMedicalAIPipeline
pipeline = CompetitionMedicalAIPipeline()
logger.info("β
Medical pipeline loaded successfully")
try:
from faster_whisper import WhisperModel
model_cache = os.getenv('HF_HOME', '/tmp/models')
whisper_model = WhisperModel(
"medium",
device="cpu",
compute_type="int8",
download_root=model_cache
)
logger.info("β
Whisper model loaded successfully")
except Exception as e:
logger.warning(f"β οΈ Could not load Whisper model: {str(e)}")
whisper_model = None
logger.info("π All models loaded successfully")
except Exception as e:
logger.error(f"β Error loading models: {str(e)}", exc_info=True)
raise
@asynccontextmanager
async def lifespan(app: FastAPI):
"""Application lifespan management (robust for Hugging Face Spaces)"""
try:
await load_models()
logger.info("β
Models loaded in lifespan.")
except Exception as e:
logger.error(f"β Error during startup: {str(e)}", exc_info=True)
# Do not raise, just log. App will start but endpoints will return 503 if models are missing.
yield
logger.info("π Shutting down...")
# Custom OpenAPI schema
def custom_openapi():
if app.openapi_schema:
return app.openapi_schema
openapi_schema = get_openapi(
title="π©Ί Medical AI Assistant API",
version="2.0.0",
description="""
## π― Advanced Medical AI Assistant
**Multilingual medical consultation API** supporting:
- π French, English, and local African languages
- π€ Audio processing with speech-to-text
- π§ Advanced medical knowledge retrieval
- β‘ Real-time medical consultations
### π§ Main Endpoints:
- **POST /medical/ask** - Text-based medical consultation
- **POST /medical/audio** - Audio-based medical consultation
- **GET /health** - System health check
- **POST /feedback** - Submit user feedback
### π Important Medical Disclaimer:
This API provides educational medical information only. Always consult qualified healthcare professionals for medical advice.
""",
routes=app.routes,
contact={
"name": "Medical AI Support",
"email": "support@medicalai.com"
},
license_info={
"name": "MIT License",
"url": "https://opensource.org/licenses/MIT"
}
)
# Add custom tags
openapi_schema["tags"] = [
{
"name": "medical",
"description": "Medical consultation endpoints"
},
{
"name": "audio",
"description": "Audio processing endpoints"
},
{
"name": "system",
"description": "System monitoring and health"
},
{
"name": "feedback",
"description": "User feedback and analytics"
}
]
app.openapi_schema = openapi_schema
return app.openapi_schema
# Initialize FastAPI app
app = FastAPI(
title="π©Ί Medical AI Assistant",
description="Advanced multilingual medical consultation API",
version="2.0.0",
lifespan=lifespan,
docs_url="/docs",
redoc_url="/redoc",
openapi_url="/openapi.json"
)
# Set custom OpenAPI
app.openapi = custom_openapi
# CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
expose_headers=["*"]
)
# ============================================================================
# PYDANTIC MODELS FOR REQUEST/RESPONSE VALIDATION
# ============================================================================
class MedicalQuestion(BaseModel):
"""Medical question request model"""
question: str = Field(..., description="The medical question", min_length=3, max_length=1000)
language: str = Field("auto", description="Preferred language (auto, en, fr)", pattern="^(auto|en|fr)$")
conversation_id: Optional[str] = Field(None, description="Optional conversation ID for context")
class Config:
schema_extra = {
"example": {
"question": "What are the symptoms of malaria and how is it treated?",
"language": "en",
"conversation_id": "conv_123"
}
}
class MedicalResponse(BaseModel):
"""Medical response model"""
success: bool = Field(..., description="Whether the request was successful")
response: str = Field(..., description="The medical response")
detected_language: str = Field(..., description="Detected or used language")
conversation_id: str = Field(..., description="Conversation identifier")
context_used: List[str] = Field(default_factory=list, description="Medical contexts used")
processing_time: float = Field(..., description="Response time in seconds")
confidence: str = Field(..., description="Response confidence level")
class Config:
schema_extra = {
"example": {
"success": True,
"response": "Malaria symptoms include high fever, chills, headache...",
"detected_language": "en",
"conversation_id": "conv_123",
"context_used": ["Malaria treatment protocols", "Symptom guidelines"],
"processing_time": 2.5,
"confidence": "high"
}
}
class AudioResponse(BaseModel):
"""Audio processing response model"""
success: bool = Field(..., description="Whether the request was successful")
transcription: str = Field(..., description="Transcribed text from audio")
response: str = Field(..., description="The medical response")
detected_language: str = Field(..., description="Detected audio language")
conversation_id: str = Field(..., description="Conversation identifier")
context_used: List[str] = Field(default_factory=list, description="Medical contexts used")
processing_time: float = Field(..., description="Response time in seconds")
audio_duration: Optional[float] = Field(None, description="Audio duration in seconds")
class Config:
schema_extra = {
"example": {
"success": True,
"transcription": "What are the symptoms of malaria?",
"response": "Malaria symptoms include high fever, chills...",
"detected_language": "en",
"conversation_id": "conv_456",
"context_used": ["Malaria diagnosis"],
"processing_time": 3.2,
"audio_duration": 4.5
}
}
class FeedbackRequest(BaseModel):
"""Feedback request model"""
conversation_id: str = Field(..., description="Conversation ID")
rating: int = Field(..., description="Rating from 1-5", ge=1, le=5)
feedback: Optional[str] = Field(None, description="Optional text feedback", max_length=500)
class Config:
schema_extra = {
"example": {
"conversation_id": "conv_123",
"rating": 5,
"feedback": "Very helpful and accurate medical information"
}
}
class HealthStatus(BaseModel):
"""System health status model"""
status: str = Field(..., description="Overall system status")
models_loaded: bool = Field(..., description="Whether ML models are loaded")
audio_available: bool = Field(..., description="Whether audio processing is available")
uptime: float = Field(..., description="System uptime in seconds")
version: str = Field(..., description="API version")
class Config:
schema_extra = {
"example": {
"status": "healthy",
"models_loaded": True,
"audio_available": True,
"uptime": 3600.0,
"version": "2.0.0"
}
}
class ErrorResponse(BaseModel):
"""Error response model"""
success: bool = Field(False, description="Always false for errors")
error: str = Field(..., description="Error message")
error_code: str = Field(..., description="Error code")
conversation_id: Optional[str] = Field(None, description="Conversation ID if available")
# ============================================================================
# UTILITY FUNCTIONS
# ============================================================================
def generate_conversation_id() -> str:
"""Generate a unique conversation ID"""
return f"conv_{uuid.uuid4().hex[:8]}"
def validate_models():
"""Check if models are loaded"""
if pipeline is None:
raise HTTPException(
status_code=503,
detail="Medical AI models are not loaded yet. Please try again in a moment."
)
# ============================================================================
# API ENDPOINTS
# ============================================================================
@app.get("/", tags=["system"])
async def root():
"""Root endpoint with API information"""
return {
"message": "π©Ί Medical AI Assistant API",
"version": "2.0.0",
"status": "running",
"docs": "/docs",
"redoc": "/redoc",
"endpoints": {
"medical_consultation": "/medical/ask",
"audio_consultation": "/medical/audio",
"health_check": "/health",
"feedback": "/feedback"
}
}
@app.get("/health", response_model=HealthStatus, tags=["system"])
async def health_check():
"""
## System Health Check
Returns the current status of the Medical AI system including:
- Overall system health
- Model loading status
- Audio processing availability
- System uptime
"""
global pipeline, whisper_model
# Calculate uptime (simplified)
uptime = time.time() - getattr(health_check, 'start_time', time.time())
if not hasattr(health_check, 'start_time'):
health_check.start_time = time.time()
return HealthStatus(
status="healthy" if pipeline is not None else "loading",
models_loaded=pipeline is not None,
audio_available=whisper_model is not None,
uptime=uptime,
version="2.0.0"
)
@app.post("/medical/ask", response_model=MedicalResponse, tags=["medical"])
async def medical_consultation(request: MedicalQuestion):
"""
## Text-based Medical Consultation
Process a medical question and return expert medical guidance.
**Features:**
- π Multilingual support (auto-detect or specify language)
- π§ AI-powered medical knowledge retrieval
- β‘ Fast response generation
- π Medical disclaimers included
**Supported Languages:** English (en), French (fr), Auto-detect (auto)
"""
start_time = time.time()
validate_models()
conversation_id = request.conversation_id or generate_conversation_id()
try:
logger.info(f"π©Ί Processing medical question: {request.question[:50]}...")
# Process with medical AI pipeline
result = pipeline.process(
question=request.question,
user_lang=request.language,
conversation_history=[]
)
processing_time = time.time() - start_time
return MedicalResponse(
success=True,
response=result["response"],
detected_language=result["source_lang"],
conversation_id=conversation_id,
context_used=result.get("context_used", []),
processing_time=round(processing_time, 2),
confidence=result.get("confidence", "medium")
)
except Exception as e:
logger.error(f"β Error in medical consultation: {str(e)}", exc_info=True)
processing_time = time.time() - start_time
raise HTTPException(
status_code=500,
detail={
"success": False,
"error": "Internal processing error occurred",
"error_code": "MEDICAL_PROCESSING_ERROR",
"conversation_id": conversation_id,
"processing_time": round(processing_time, 2)
}
)
@app.post("/medical/audio", response_model=AudioResponse, tags=["audio", "medical"])
async def audio_medical_consultation(
file: UploadFile = File(..., description="Audio file (WAV, MP3, M4A, etc.)")
):
"""
## Audio-based Medical Consultation
Process an audio medical question and return expert medical guidance.
**Features:**
- π€ Speech-to-text conversion
- π Language detection from audio
- π§ Medical AI processing of transcribed text
- π Full transcription provided
**Supported Audio Formats:** WAV, MP3, M4A, FLAC, OGG
**Max File Size:** 25MB
**Max Duration:** 5 minutes
"""
start_time = time.time()
validate_models()
if whisper_model is None:
raise HTTPException(
status_code=503,
detail="Audio processing is currently unavailable"
)
conversation_id = generate_conversation_id()
try:
logger.info(f"π€ Processing audio file: {file.filename}")
# Read audio file
file_bytes = await file.read()
# Process audio
from audio_utils import preprocess_audio
processed_audio = preprocess_audio(file_bytes)
if len(processed_audio) == 0:
raise HTTPException(
status_code=400,
detail="Could not process audio file. Please check the format and try again."
)
# Transcribe audio
segments, info = whisper_model.transcribe(
processed_audio,
beam_size=5,
language=None,
task='transcribe',
vad_filter=True
)
transcription = "".join([seg.text for seg in segments])
detected_language = info.language
if not transcription.strip():
raise HTTPException(
status_code=400,
detail="Could not transcribe audio. Please ensure clear speech and try again."
)
logger.info(f"π€ Transcription: {transcription[:100]}...")
# Process transcribed text with medical AI
result = pipeline.process(
question=transcription,
user_lang=detected_language,
conversation_history=[]
)
processing_time = time.time() - start_time
return AudioResponse(
success=True,
transcription=transcription,
response=result["response"],
detected_language=detected_language,
conversation_id=conversation_id,
context_used=result.get("context_used", []),
processing_time=round(processing_time, 2),
audio_duration=len(processed_audio) / 16000 # Assuming 16kHz sample rate
)
except HTTPException:
raise
except Exception as e:
logger.error(f"β Error in audio processing: {str(e)}", exc_info=True)
processing_time = time.time() - start_time
raise HTTPException(
status_code=500,
detail={
"success": False,
"error": "Audio processing error occurred",
"error_code": "AUDIO_PROCESSING_ERROR",
"conversation_id": conversation_id,
"processing_time": round(processing_time, 2)
}
)
@app.post("/feedback", tags=["feedback"])
async def submit_feedback(request: FeedbackRequest):
"""
## Submit User Feedback
Submit feedback about a medical consultation to help improve the service.
**Rating Scale:**
- 1: Very Poor
- 2: Poor
- 3: Average
- 4: Good
- 5: Excellent
"""
try:
logger.info(f"π Feedback received - ID: {request.conversation_id}, Rating: {request.rating}")
# Here you could store feedback in a database
# For now, just log it
feedback_data = {
"conversation_id": request.conversation_id,
"rating": request.rating,
"feedback": request.feedback,
"timestamp": time.time()
}
return {
"success": True,
"message": "Thank you for your feedback! This helps us improve our medical AI service.",
"feedback_id": f"fb_{uuid.uuid4().hex[:8]}"
}
except Exception as e:
logger.error(f"β Error processing feedback: {str(e)}")
raise HTTPException(
status_code=500,
detail="Error processing feedback"
)
@app.get("/medical/specialties", tags=["medical"])
async def get_medical_specialties():
"""
## Get Supported Medical Specialties
Returns a list of medical specialties and conditions supported by the AI.
"""
return {
"specialties": [
{
"name": "Primary Care",
"description": "General medical consultations and health guidance",
"conditions": ["General symptoms", "Preventive care", "Health maintenance"]
},
{
"name": "Infectious Diseases",
"description": "Infectious disease diagnosis and treatment",
"conditions": ["Malaria", "Tuberculosis", "HIV/AIDS", "Respiratory infections"]
},
{
"name": "Emergency Medicine",
"description": "Emergency protocols and urgent care guidance",
"conditions": ["Stroke recognition", "Cardiac emergencies", "Trauma assessment"]
},
{
"name": "Chronic Disease Management",
"description": "Management of chronic conditions",
"conditions": ["Diabetes", "Hypertension", "Gastritis"]
}
],
"languages_supported": ["English", "French", "Auto-detect"],
"disclaimer": "This AI provides educational information only. Always consult healthcare professionals for medical advice."
}
# ============================================================================
# ERROR HANDLERS
# ============================================================================
@app.exception_handler(404)
async def not_found_handler(request, exc):
return JSONResponse(
status_code=404,
content={
"success": False,
"error": "Endpoint not found",
"error_code": "NOT_FOUND",
"available_endpoints": [
"/docs - API Documentation",
"/medical/ask - Text consultation",
"/medical/audio - Audio consultation",
"/health - System status",
"/feedback - Submit feedback"
]
}
)
@app.exception_handler(422)
async def validation_exception_handler(request, exc):
return JSONResponse(
status_code=422,
content={
"success": False,
"error": "Invalid request data",
"error_code": "VALIDATION_ERROR",
"details": exc.errors()
}
)
# =========================================================================
# STARTUP MESSAGE
# =========================================================================
# The following block is removed for Hugging Face Spaces compatibility:
# if __name__ == "__main__":
# import uvicorn
# print("π©Ί Starting Medical AI Assistant API...")
# print("π Documentation available at: http://localhost:8000/docs")
# print("π Alternative docs at: http://localhost:8000/redoc")
# uvicorn.run(
# app,
# host="0.0.0.0",
# port=8000,
# log_level="info",
# reload=False
# ) |